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(1) Use the Euclidean algorithm in Z[i] to compute gcd(7−6i, 3−14∗i). (Hint:
look at how we proved that Z[i] is Euclidean).

We have to find q, r ∈ Z[i] with 3 − 14i = (7 − 6i)q + r and Nr <
N(7+6i) = 85. To this end, write the equation in the form 3−14i

7−6i −q = r
7−6i ;

now we have to find q in such a way that N r
7−6i < 1 (We can do this

because the norm is multiplicative). Now 3−14i
7−6i = (3−14i)(7+6i)

(7−6i)(7+6i) = 105−80i
85 =

21
17 −

16
17 i. The Gaussian integer nearest to this number is 1 − i, hence

r = (3− 14i)− (7− 6i)(1− i) = 2− i.
The next step is 7 − 6i = (2 − i)q + r. Here we find q = (5 − i) and

r = 0, hence gcd(3− 14i, 7− 6i) = 2− i, the last nonzero remainder. Note
that the gcd is only determined up to units, so if your calculations give
(2− i)i = 1 + 2i etc., the result is correct too.

Note that 3−14i = −(1+2i)(5+4i) and 7−6i = −(1+2i)(1+4i). Also
observe that we can compute a Bezout representation of the gcd; since the
Euclidean algorithm is just one line, however, this is quite trivial:

2− i = 3− 14i− (7− 6i)(1− i),

or, after multiplying through by i,

1 + 2i = (3− 14i)i− (7 + 6i)(1 + i).

(2) Find the prime factorization of −3 + 24i. (Hint: first factor the norm).

We have N(−3 + 24i) = 32 + 242 = 585 = 32 · 5 · 13. Clearly −3 + 24i =
3(−1 + 8i) with N(−1 + 8i) = 65 = 5 · 13. Thus −1 + 8i must be divisible
by one of the two primes 1± 2i with norm 5. In fact we find

−1 + 8i

1− 2i
=

(−1 + 8i)(1 + 2i)
5

=
−17 + 6i

5
,

−1 + 8i

1 + 2i
=

(−1 + 8i)(1− 2i)
5

= 3 + 2i.

This shows that −1 + 8i = (1 + 2i)(3 + 2i), hence

−3 + 24i = 3(1 + 2i)(3 + 2i).

(3) Solve the congruence x2 ≡ −1 mod 41 and then compute gcd(x + i, 41) in
Z[i]. Show that this compuation gives us a presentation of 41 as a sum of
two squares.

We have −1+41 = 40 and −1+2 ·41 = 81 = 92, hence 92 ≡ −1 mod 41.
Next 41

9+i = 9
2 −

1
2 i, and there are several choices for “nearest Gaussian

integer”; each of them will work, so let us take q = 4 + 0i. We find 41 −
1



2 HOMEWORK 6

(9 + i)4 = 5− 4i. Next 9+i
5−4i = 1 + i, so gcd(41, 9 + i) = 5− 4i, and in fact

41 = 52 + 42.
This is (after a few modifications) one of the fastest algorithms for com-

puting the representation of large primes p ≡ 1 mod 4 as a sum of two
squares.

(4) Compute the Legendre symbols ( 1+2i
1+6i ) and (1+6i

1+2i ) in Z[i].

Euler’s criterium: (1 + 6i)(N(1+2i)−1)/2 = (1 + 6i)2 ≡ −35 + 12i ≡ 2i ≡
−1 mod (1 + 2i) Here we have reduced modulo 5 = N(1 + 2i) and then
modulo 1 + 2i. Thus ( 1+6i

1+2i ) = −1.
Reduction: (1+6i

1+2i ) = ( −2
1+2i ) and −22 ≡ 4 ≡ −1 mod (1 + 2i) gives the

same result. Here we have used that 1 + 6i ≡ −2 mod (1 + 2i).
We also could use the fact that −2 = (1 + i)2i and then find ( 1+6i

1+2i ) =
( −2
1+2i ) = ( i

1+2i ), with i2 ≡ −1 mod (1 + 2i) giving us the known result.
For elements with bigger norms we could also use the reciprocity law.

(5) Compute the Legendre symbols ( X+1
X2+1 ) and (X2+1

X+1 ) in F7[X]. Show more

generally that (X2+1
X+1 ) = ( 2

p ) in Fp[X], where the Legendre symbol on the
right is the one in Z.

Recall that the norm of a prime polynomial of degree n in Fp[X] is pn.
Before we can apply Euler’s criterium we have to check that X2 + 1 is
irreducible in F7[X] (in F5[X], we have X2 + 1 = (X + 2)(X − 2), hence
( X+1

X2+1 ) = (X+1
X−2 )(X+1

X+2 ) = ( 3
5 )(−1

5 ) = −1 and yet (X+1)12 ≡ 1 mod X2+1.)
Over F7, however, X2 +1 is irreducible because it does not have a root (−1
is a quadratic nonresidue modulo 7).

Thus ( X+1
X2+1 ) ≡ (X + 1)24 ≡ (X2 + 2X + 1)12 ≡ (2X)12 ≡ (4X2)6 ≡

(−4)6 ≡ 1 mod X2 + 1, hence (X2+1
X+1 ) = −1.

On the other hand, for arbitrary odd primes p we have (X2+1
X+1 ) = ( 2

X+1 )
since X2 + 1 ≡ 2 mod (X + 1). Now ( 2

X+1 ) ≡ 2(p−1)/2 ≡ ( 2
p ) mod X + 1.

This shows that the two symbols must be equal, since X +1 does not divide
±2.

(6) Let f ∈ Fp[X] be a monic polynomial. Find a necessary condition for f to
be a sum of two squares (f = g2 + h2 for g, h ∈ Fp[X]). Verify for some
examples that this condition is also sufficient, and state a precise conjecture.

Note that sums of two squares in Fp[X] need not have even degree, as
the example (X + 1)2 + (2X)2 = 2X + 1 in F5[X] shows.

Assume that f is monic and prime. Then f = A2 +B2 for A,B ∈ Fp[X]
implies (A/B)2 ≡ −1 mod f , hence (−1

f ) = +1.
Is this sufficient? Let us check F3[X]. If f has degree 1, then (−1

f ) =
(−1

3 ) = −1. Next f = X2 + 2 does not seem to be a sum of two squares;
but this is because f = (X − 1)(X + 1) is not irreducible. The irreducible
polynomials of degree 2 are X2 + 1 and X2 + X + 2 = (X + 2)2 + 12.
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In F5[X] we have (−1
f ) = (−1

5 ) = +1 for all linear polynomials f . In fact
we find

X = (X − 1)2 + (2X + 2)2,

X + 1 = (2X − 1)2 + X2,

X + 2 = (X + 1)2 + (2X + 1)2,

X + 3 = (X + 2)2 + (2X − 2)2,

X + 4 = (X − 2)2 + (2X)2.

Thus it seems that f is a sum of two squares if and only if (−1
f ) = +1

in Fp[x]. I also bet that our proof for the corresponding result in Z carries
over to the situation in Fp[x]. I will check that after this semester.


