ELEMENTARY NUMBER THEORY

HOMEWORK 6

(1) Use the Euclidean algorithm in Z[i] to compute ged(7— 67,3 —14x4). (Hint:

look at how we proved that Z[i] is Euclidean).

We have to find ¢,7 € Z[i] with 3 — 14i = (7 — 6i)q + r and Nr <
N(7+46i) = 85. To this end, write the equation in the form 37:164; —q = "5
now we have to find ¢ in such a way that N="5 < 1 (We can do this

because the norm is multiplicative). Now 37:16‘? = ((37:16%)((7716%) = 1058—5801' =
% — %z The Gaussian integer nearest to this number is 1 — 4, hence
r=3—-14i) — (7T —6i)(1 —4i) =2 — 4.

The next step is 7 — 6i = (2 —i)g + r. Here we find ¢ = (5 —4) and
r =0, hence ged(3 — 144, 7 — 6i) = 2 — 4, the last nonzero remainder. Note
that the ged is only determined up to units, so if your calculations give
(2 —1i)i = 1+ 21 etc., the result is correct too.

Note that 3 —147 = —(1+42¢)(5+44) and 7—6i = —(1+24)(1+4¢). Also
observe that we can compute a Bezout representation of the ged; since the
Euclidean algorithm is just one line, however, this is quite trivial:

2—i=3—14i — (7T—6i)(1—1i),

or, after multiplying through by 4,
1420 =(3—14i)i — (74 6i)(1 +19).

Find the prime factorization of —3 4 24i. (Hint: first factor the norm).
We have N(—3+ 24i) = 3% + 242 = 585 = 3% -5 13. Clearly —3 +24i =
3(—1+ 8i) with N(—1+8i) =65 =15-13. Thus —1 + 8 must be divisible
by one of the two primes 1 + 2¢ with norm 5. In fact we find
—1+8  (—1+8i)(1+2i) —17+6i

1—2i 5 5
148 (—1+8i)(1—2i) ,

= :3 2.
1+2i 5 T

This shows that —1 + 8 = (1 4 2¢)(3 4 2¢), hence
— 34 24i = 3(1 + 23)(3 + 2i).

Solve the congruence 22 = —1 mod 41 and then compute ged(z + i,41) in
Z[i]. Show that this compuation gives us a presentation of 41 as a sum of
two squares.

We have —1 441 = 40 and —1+2-41 = 81 = 92, hence 92 = —1 mod 41.

Next % = % — %i, and there are several choices for “nearest Gaussian

integer”; each of them will work, so let us take ¢ = 4 + 0i. We find 41 —
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(9414)4 =5—4i. Next 2t =144, s0 ged(41,9+14) =5 — 44, and in fact
41 = 52 + 42,
This is (after a few modifications) one of the fastest algorithms for com-
puting the representation of large primes p = 1 mod 4 as a sum of two
squares.

Compute the Legendre symbols ({52¢) and ({15) in Z[i].

Euler’s criterium: (1 + 64)(NU+20-1/2 — (1 4 6i)2 = —35 + 12i = 2i =
—1mod (1 + 2i) Here we have reduced modulo 5 = N(1 + 2i) and then
modulo 1+ 2i. Thus (iigz) =-1.

Reduction: ({35¢) = (133;) and —2? = 4 = —1 mod (1 + 2i) gives the
same result. Here we have used that 1+ 6i = —2 mod (1 + 23). _

We also could use the fact that —2 = (1 + i)% and then find ({£3¢) =
(1537) = (135;), with i* = —1 mod (1 + 2i) giving us the known result.

For elements with bigger norms we could also use the reciprocity law.

Compute the Legendre symbols (X L) and (X X+1 1) in F7[X]. Show more
generally that ())((111) = (5) in F,[X], where the Legendre symbol on the

right is the one in Z.

Recall that the norm of a prime polynomial of degree n in F,[X] is p".
Before we can apply Euler’s criterium we have to check that X2 + 1 is
irreducible in F;[X] (in F5[X], we have X2 + 1 = (X + 2)(X — 2), hence
())((2111) = (%)(%) = (%)(%) = —landyet (X+1)!2 =1 mod X2+1.)
Over Fr, however, X2+ 1 is irreducible because it does not have a root (—1
is a quadratic nonresidue modulo 7).

Thus (5555) = (X + 1) = (X2 +2X + )12 = 2X)!? = (4X?) =

X241
- X241
(—4)® = 1 mod X2 + 1, hence ( le )=—1. ]
On the other hand, for arbitrary odd primes p we have ())((j‘ll) = (XLH)
since X2+ 1 =2mod (X + 1). Now (X—H) = 2(-1)/2 = (%) mod X + 1.

This shows that the two symbols must be equal, since X +1 does not divide
+2.

Let f € F,[X] be a monic polynomial. Find a necessary condition for f to
be a sum of two squares (f = g® + h% for g,h € F,[X]). Verify for some
examples that this condition is also sufficient, and state a precise conjecture.

Note that sums of two squares in F,[X] need not have even degree, as
the example (X + 1)2 + (2X)? = 2X + 1 in F5[X] shows.

Assume that f is monic and prime. Then f = A%+ B? for A, B € F,[X]
implies (A/B)? = —1 mod f, hence (F 1)y = +1.

Is this sufficient? Let us check ]Fg[ ]. If f has degree 1, then (’71) =

(%1) = —1. Next f = X2 + 2 does not seem to be a sum of two squares;
but this is because f = (X — 1)(X + 1) is not irreducible. The irreducible
polynomials of degree 2 are X2 +1 and X2 + X +2 = (X +2)% + 12
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In F5[X] we have ( ’71) = (%) = +1 for all linear polynomials f. In fact
we find

X=(X-12+(2X+2)3
X+1=(2X-1)2+ X2
X+2=(X+1)+(2X +1)2,
X +3=(X+2)?2+(2X -2)%
X +4=(X—-2)%+(2X)?

Thus it seems that f is a sum of two squares if and only if (_71) = +1
in Fp[z]. T also bet that our proof for the corresponding result in Z carries
over to the situation in F,[x]. T will check that after this semester.



