ELEMENTARY NUMBER THEORY

HOMEWORK 6

(1) Use the Euclidean algorithm in $\mathbb{Z}[i]$ to compute $\operatorname{gcd}(7-6 i, 3-14 * i)$. (Hint: look at how we proved that $\mathbb{Z}[i]$ is Euclidean).

We have to find $q, r \in \mathbb{Z}[i]$ with $3-14 i=(7-6 i) q+r$ and $N r<$ $N(7+6 i)=85$. To this end, write the equation in the form $\frac{3-14 i}{7-6 i}-q=\frac{r}{7-6 i}$; now we have to find q in such a way that $N \frac{r}{7-6 i}<1$ (We can do this because the norm is multiplicative). Now $\frac{3-14 i}{7-6 i}=\frac{(3-14 i)(7+6 i)}{(7-6 i)(7+6 i)}=\frac{105-80 i}{85}=$ $\frac{21}{17}-\frac{16}{17} i$. The Gaussian integer nearest to this number is $1-i$, hence $r=(3-14 i)-(7-6 i)(1-i)=2-i$.

The next step is $7-6 i=(2-i) q+r$. Here we find $q=(5-i)$ and $r=0$, hence $\operatorname{gcd}(3-14 i, 7-6 i)=2-i$, the last nonzero remainder. Note that the gcd is only determined up to units, so if your calculations give $(2-i) i=1+2 i$ etc., the result is correct too.

Note that $3-14 i=-(1+2 i)(5+4 i)$ and $7-6 i=-(1+2 i)(1+4 i)$. Also observe that we can compute a Bezout representation of the gcd; since the Euclidean algorithm is just one line, however, this is quite trivial:

$$
2-i=3-14 i-(7-6 i)(1-i)
$$

or, after multiplying through by i,

$$
1+2 i=(3-14 i) i-(7+6 i)(1+i) .
$$

(2) Find the prime factorization of $-3+24 i$. (Hint: first factor the norm).

We have $N(-3+24 i)=3^{2}+24^{2}=585=3^{2} \cdot 5 \cdot 13$. Clearly $-3+24 i=$ $3(-1+8 i)$ with $N(-1+8 i)=65=5 \cdot 13$. Thus $-1+8 i$ must be divisible by one of the two primes $1 \pm 2 i$ with norm 5 . In fact we find

$$
\begin{aligned}
& \frac{-1+8 i}{1-2 i}=\frac{(-1+8 i)(1+2 i)}{5}=\frac{-17+6 i}{5} \\
& \frac{-1+8 i}{1+2 i}=\frac{(-1+8 i)(1-2 i)}{5}=3+2 i
\end{aligned}
$$

This shows that $-1+8 i=(1+2 i)(3+2 i)$, hence

$$
-3+24 i=3(1+2 i)(3+2 i) .
$$

(3) Solve the congruence $x^{2} \equiv-1 \bmod 41$ and then compute $\operatorname{gcd}(x+i, 41)$ in $\mathbb{Z}[i]$. Show that this compuation gives us a presentation of 41 as a sum of two squares.

We have $-1+41=40$ and $-1+2 \cdot 41=81=9^{2}$, hence $9^{2} \equiv-1 \bmod 41$.
Next $\frac{41}{9+i}=\frac{9}{2}-\frac{1}{2} i$, and there are several choices for "nearest Gaussian integer"; each of them will work, so let us take $q=4+0 i$. We find $41-$
$(9+i) 4=5-4 i$. Next $\frac{9+i}{5-4 i}=1+i$, so $\operatorname{gcd}(41,9+i)=5-4 i$, and in fact $41=5^{2}+4^{2}$.

This is (after a few modifications) one of the fastest algorithms for computing the representation of large primes $p \equiv 1 \bmod 4$ as a sum of two squares.
(4) Compute the Legendre symbols $\left(\frac{1+2 i}{1+6 i}\right)$ and $\left(\frac{1+6 i}{1+2 i}\right)$ in $\mathbb{Z}[i]$.

Euler's criterium: $(1+6 i)^{(N(1+2 i)-1) / 2}=(1+6 i)^{2} \equiv-35+12 i \equiv 2 i \equiv$ $-1 \bmod (1+2 i)$ Here we have reduced modulo $5=N(1+2 i)$ and then modulo $1+2 i$. Thus $\left(\frac{1+6 i}{1+2 i}\right)=-1$.

Reduction: $\left(\frac{1+6 i}{1+2 i}\right)=\left(\frac{-2}{1+2 i}\right)$ and $-2^{2} \equiv 4 \equiv-1 \bmod (1+2 i)$ gives the same result. Here we have used that $1+6 i \equiv-2 \bmod (1+2 i)$.

We also could use the fact that $-2=(1+i)^{2} i$ and then find $\left(\frac{1+6 i}{1+2 i}\right)=$ $\left(\frac{-2}{1+2 i}\right)=\left(\frac{i}{1+2 i}\right)$, with $i^{2} \equiv-1 \bmod (1+2 i)$ giving us the known result.

For elements with bigger norms we could also use the reciprocity law.
(5) Compute the Legendre symbols $\left(\frac{X+1}{X^{2}+1}\right)$ and $\left(\frac{X^{2}+1}{X+1}\right)$ in $\mathbb{F}_{7}[X]$. Show more generally that $\left(\frac{X^{2}+1}{X+1}\right)=\left(\frac{2}{p}\right)$ in $\mathbb{F}_{p}[X]$, where the Legendre symbol on the right is the one in \mathbb{Z}.

Recall that the norm of a prime polynomial of degree n in $\mathbb{F}_{p}[X]$ is p^{n}. Before we can apply Euler's criterium we have to check that $X^{2}+1$ is irreducible in $\mathbb{F}_{7}[X]$ (in $\mathbb{F}_{5}[X]$, we have $X^{2}+1=(X+2)(X-2)$, hence $\left(\frac{X+1}{X^{2}+1}\right)=\left(\frac{X+1}{X-2}\right)\left(\frac{X+1}{X+2}\right)=\left(\frac{3}{5}\right)\left(\frac{-1}{5}\right)=-1$ and yet $(X+1)^{12} \equiv 1 \bmod X^{2}+1$.) Over \mathbb{F}_{7}, however, $X^{2}+1$ is irreducible because it does not have a root $(-1$ is a quadratic nonresidue modulo 7).

Thus $\left(\frac{X+1}{X^{2}+1}\right) \equiv(X+1)^{24} \equiv\left(X^{2}+2 X+1\right)^{12} \equiv(2 X)^{12} \equiv\left(4 X^{2}\right)^{6} \equiv$ $(-4)^{6} \equiv 1 \bmod X^{2}+1$, hence $\left(\frac{X^{2}+1}{X+1}\right)=-1$.

On the other hand, for arbitrary odd primes p we have $\left(\frac{X^{2}+1}{X+1}\right)=\left(\frac{2}{X+1}\right)$ since $X^{2}+1 \equiv 2 \bmod (X+1)$. Now $\left(\frac{2}{X+1}\right) \equiv 2^{(p-1) / 2} \equiv\left(\frac{2}{p}\right) \bmod X+1$. This shows that the two symbols must be equal, since $X+1$ does not divide ± 2.
(6) Let $f \in \mathbb{F}_{p}[X]$ be a monic polynomial. Find a necessary condition for f to be a sum of two squares $\left(f=g^{2}+h^{2}\right.$ for $\left.g, h \in \mathbb{F}_{p}[X]\right)$. Verify for some examples that this condition is also sufficient, and state a precise conjecture.

Note that sums of two squares in $\mathbb{F}_{p}[X]$ need not have even degree, as the example $(X+1)^{2}+(2 X)^{2}=2 X+1$ in $\mathbb{F}_{5}[X]$ shows.

Assume that f is monic and prime. Then $f=A^{2}+B^{2}$ for $A, B \in \mathbb{F}_{p}[X]$ implies $(A / B)^{2} \equiv-1 \bmod f$, hence $\left(\frac{-1}{f}\right)=+1$.

Is this sufficient? Let us check $\mathbb{F}_{3}[X]$. If f has degree 1 , then $\left(\frac{-1}{f}\right)=$ $\left(\frac{-1}{3}\right)=-1$. Next $f=X^{2}+2$ does not seem to be a sum of two squares; but this is because $f=(X-1)(X+1)$ is not irreducible. The irreducible polynomials of degree 2 are $X^{2}+1$ and $X^{2}+X+2=(X+2)^{2}+1^{2}$.

In $\mathbb{F}_{5}[X]$ we have $\left(\frac{-1}{f}\right)=\left(\frac{-1}{5}\right)=+1$ for all linear polynomials f. In fact we find

$$
\begin{aligned}
X & =(X-1)^{2}+(2 X+2)^{2}, \\
X+1 & =(2 X-1)^{2}+X^{2}, \\
X+2 & =(X+1)^{2}+(2 X+1)^{2}, \\
X+3 & =(X+2)^{2}+(2 X-2)^{2}, \\
X+4 & =(X-2)^{2}+(2 X)^{2} .
\end{aligned}
$$

Thus it seems that f is a sum of two squares if and only if $\left(\frac{-1}{f}\right)=+1$ in $\mathbb{F}_{p}[x]$. I also bet that our proof for the corresponding result in \mathbb{Z} carries over to the situation in $\mathbb{F}_{p}[x]$. I will check that after this semester.

