ELEMENTARY NUMBER THEORY

HOMEWORK 6

- (1) Use the Euclidean algorithm in $\mathbb{Z}[i]$ to compute gcd(7-6i, 3-14*i). (Hint: look at how we proved that $\mathbb{Z}[i]$ is Euclidean).
- (2) Find the prime factorization of -3 + 24i. (Hint: first factor the norm).
- (3) Solve the congruence $x^2 \equiv -1 \mod 41$ and then compute gcd(x+i, 41) in $\mathbb{Z}[i]$. Show that this compution gives us a presentation of 41 as a sum of two squares.
- (4) Compute the Legendre symbols $(\frac{1+2i}{1+6i})$ and $(\frac{1+6i}{1+2i})$ in $\mathbb{Z}[i]$.
- (5) Compute the Legendre symbols $(\frac{X+1}{X^2+1})$ and $(\frac{X^2+1}{X+1})$ in $\mathbb{F}_7[X]$. Show more generally that $(\frac{X^2+1}{X+1}) = (\frac{2}{p})$ in $\mathbb{F}_p[X]$, where the Legendre symbol on the right is the one in \mathbb{Z} .
- (6) Let $f \in \mathbb{F}_p[X]$ be a monic polynomial. Find a necessary condition for f to be a sum of two squares $(f = g^2 + h^2 \text{ for } g, h \in \mathbb{F}_p[X])$. Verify for some examples that this condition is also sufficient, and state a precise conjecture.