ELEMENTARY NUMBER THEORY

HOMEWORK 6

(1) Use the Euclidean algorithm in $\mathbb{Z}[i]$ to compute $\operatorname{gcd}(7-6 i, 3-14 * i)$. (Hint: look at how we proved that $\mathbb{Z}[i]$ is Euclidean).
(2) Find the prime factorization of $-3+24 i$. (Hint: first factor the norm).
(3) Solve the congruence $x^{2} \equiv-1 \bmod 41$ and then compute $\operatorname{gcd}(x+i, 41)$ in $\mathbb{Z}[i]$. Show that this compuation gives us a presentation of 41 as a sum of two squares.
(4) Compute the Legendre symbols $\left(\frac{1+2 i}{1+6 i}\right)$ and $\left(\frac{1+6 i}{1+2 i}\right)$ in $\mathbb{Z}[i]$.
(5) Compute the Legendre symbols $\left(\frac{X+1}{X^{2}+1}\right)$ and $\left(\frac{X^{2}+1}{X+1}\right)$ in $\mathbb{F}_{7}[X]$. Show more generally that $\left(\frac{X^{2}+1}{X+1}\right)=\left(\frac{2}{p}\right)$ in $\mathbb{F}_{p}[X]$, where the Legendre symbol on the right is the one in \mathbb{Z}.
(6) Let $f \in \mathbb{F}_{p}[X]$ be a monic polynomial. Find a necessary condition for f to be a sum of two squares $\left(f=g^{2}+h^{2}\right.$ for $\left.g, h \in \mathbb{F}_{p}[X]\right)$. Verify for some examples that this condition is also sufficient, and state a precise conjecture.

