ELEMENTARY NUMBER THEORY

HOMEWORK 5

(1) Download a windows executable version of pari from my webpage http://www.fen.bilkent.edu.tr/~franz/algeo05.html or, better yet, an updated full version from the pari website ftp://megrez.math.u-bordeaux.fr/pub/pari/windows Get familiar with it by doing a few calculations:
(a) Compute $2^{340} \bmod 341$. The residue class $2 \bmod 341$ is represented by $\operatorname{Mod}(2,341)$. What is the difference between $\operatorname{Mod}\left(2^{\wedge} 340,341\right)$ and $\operatorname{Mod}(2,341)^{\wedge} 340$ (the results are the same, but the calculations differ). If you can't see what's going on, compute $2^{p-1} \bmod p$ for $p=898476298723511$.
(b) Use pari to show that $\operatorname{gcd}\left(2^{125}-1,2^{75}-1\right)=2^{25}-1$ (check first what $\operatorname{gcd}(15,21)$ is doing $)$. Can you guess a formula for $\operatorname{gcd}\left(2^{a}-1,2^{b}-1\right)$?
(c) Type in ?bezout and then compute the Bezout representation for the gcd-calculation above. In general you can copy results from the pari window to a file by rightclicking the blue frame on top and scrolling down the menu.
(d) Type in factor (35) and see what happens. The guy who first factored $2^{67}-1$ said it took him three years of sundays to find the factorization. Factor the number using pari.
(e) What does the command nextprime do? Find the smallest primes above 10^{10} and 10^{100}.
(2) Now exchange an RSA-encrypted message with your partner. Pick two primes p, q with at least 10 digits and form $N=p q$. Pick an exponent E coprime to $(p-1)(q-1)$. Pick a message consisting of at most 10 letters (if you want to send more, break them up into smaller pieces). Encode them and send N, E and the encrypted message to your partner.

Your second job is to decode the message you receive from him/her by factoring his N and finding the inverse D of $E \bmod (p-1)(q-1)$.

The homework will be collected in class next Wednesday.

