
ELEMENTARY NUMBER THEORY

HOMEWORK 4

(1) Show that y2 = x3 + 7 has no integer solutions.
Hints: (This proof is due to V.A. Lebesgue)

(a) Show that x is odd.
If x is even, then y2 ≡ 7 mod 8: contradiction.

(b) Write the equation as y2 + 1 = x3 + 8 and factor the right hand side.
y2 + 1 = (x + 2)(x2 − 2x + 4)

(c) Show that the quadratic factor is divisible by some prime p ≡ 3 mod 4.
Since x is odd, we have x2 ≡ 1 mod 8 and 2x ≡ 2 mod 4, hence x2 −
2x+4 ≡ 3 mod 4. Moreover, both factors are positive since y2 +1 > 0
and the quadratic factor has negative discriminant. Thus x2 − 2x + 4
is divisible by a prime p ≡ 3 mod 4. (Note that we need the positivity:
−5 ≡ 3 mod 4, but no prime p ≡ 3 mod 4 divides −5).
Here’s a different solution: we claim that x ≡ 1 mod 4; in fact we have
x3 = x · x2 ≡ x mod 8 for all odd x, hence y2 = x3 + 7 ≡ x + 3 mod 4,
and since squares cannot be ≡ 2 mod 4, the claim follows. But now
x ≡ 1 mod 4 implies x + 2 ≡ 3 mod 4, hence the first factor is also
divisible by a prime p ≡ 3 mod 4.

(d) Look at the left hand side.
We have seen that the right hand side is divisible by a prime p ≡
3 mod 4. This implies y2 ≡ −1 mod p, which is a contradiction since
(−1/p) = −1 for primes p ≡ 3 mod 4.

(2) Generalize the preceding exercise to an infinite family of diophantine equa-
tions y2 = x3 + c.

Remark: diophantine equations of the form y2 = f(x), where f(x) is a
polynomial of degree 3 or 4 without multiple roots, are known as elliptic
curves. During the 20th century, a vast amount of results was established
for elliptic curves, and it was the theory of elliptic curves that allowed Wiles
to prove Fermat’s Last Theorem.

The simplest generalization is the following: put c = 8k3 − 1 for some
odd k. Then y2 = x3 + c ≡ x3 − 1 implies that x ≡ 1 mod 4 as above, and
the rest of the proof is the same.

In general, however, you must be very careful not to fall into one of
many traps. Consider for example the case c = m3 − n2 and assume that
m ≡ 2 mod 4. There cannot be a general proof that y2 = x3 + c has no
integral solution because for m = n = 2 we have c = 4 and y2 = x3 + 4 has
the solutions (0,±2).

Assume therefore that in addition we have n ≡ 1 mod 2. Then c ≡
−n2 ≡ −1 mod 4, hence x ≡ 1 mod 4 as above. Now y2 + n2 = (x +
m)(x2 − mx + m2). Since x + m ≡ 1 + 2 ≡ 3 mod 4, there is a prime
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p ≡ 3 mod 4 dividing the left hand side. Now we come across the second
trap: if p | n, then we will not get a contradiction because it is perfectly
possible that p | y, too. In order to exclude this possibility we have to
demand that n is not divisible by any prime p ≡ 3 mod 4, and then the
proof actually goes through:

Assume that m ≡ 2 mod 4 and n ≡ 1 mod 2 are integers such
that n is not divisible by any prime p ≡ 3 mod 4. Then the
diophantine equation y2 = x3 + c with c = m3−n2 does not have
any integral solutions.
In fact the condition on n is necessary, as the example m = 2,
n = 3 shows: y2 = x3 − 1 has the integral solution (1, 0) (note
that our proof showed that y must be divisible by 3).

Note that even in the case where n is even we can go further; for example,
there are no soltions if m = 2M with M ≡ 3 mod 4 and n = 2N with N
odd. Are there other cases you can handle?

(3) (Euler) Prove that if p ≡ 1 mod 4 is prime and a = p−1
4 − n − n2, then

(q/p) = +1 for every q | a.
We have 4a = p − (2n + 1)2; thus every odd q | a satisfies p ≡ (2n +

1)2 mod q, hence if p 6= q we find that (q/p) = +1.
If q = 2, we have to work a little harder. In this case, p ≡ (2n +

1)2 mod 4a, hence p ≡ (2n + 1)2 mod 8 (since 2 | a), and this shows that
(2/p) = 1 by the second supplementary law.

(4) (Euler) Ifp ≡ 1 mod 4 is prime, then p−1
4 − n(n + 1) is a quadratic residue

modulo p for every integer n.
We have p−1

4 − n(n + 1) ≡ p−1
4 mod n. This is a square moduo p if and

only if p− 1− 4n(n− 1) ≡ −(2n + 1)2 mod p is, and this is true for primes
p ≡ 1 mod 4 (not dividing 2n + 1).


