ELEMENTARY NUMBER THEORY

HOMEWORK 4

(1) Show that $y^{2}=x^{3}+7$ has no integer solutions.

Hints: (This proof is due to V.A. Lebesgue)
(a) Show that x is odd.
(b) Write the equation as $y^{2}+1=x^{3}+8$ and factor the right hand side.
(c) Show that the quadratic factor is divisible by some prime $p \equiv 3 \bmod 4$
(d) Look at the left hand side.
(2) Generalize the preceding exercise to an infinite family of diophantine equations $y^{2}=x^{3}+c$.

This is already a research problem, although I think that the most natural generalization $\left(y^{2}=x^{3}+m^{3}-n^{2}\right)$ is discussed quite often in the literature (one would have to check Mordell's book on diophantine equations). I do not know whether generalizations of the form $y^{2}=x^{3}+m^{3}-k n^{2}$ for integers $k \neq 1$ are known. If you can find a nontrivial result in this direction before the end of the semester, let me know!
(3) (This is a conjecture by Euler) Prove that if $p \equiv 1 \bmod 4$ is prime and $a=\frac{p-1}{4}-n-n^{2}$, then $(q / p)=+1$ for every $q \mid a$.
(4) (Euler) If $p \equiv 1 \bmod 4$ is prime, then $\frac{p-1}{4}-n(n+1)$ is a quadratic residue modulo p for every integer n.

The homework will be collected in class next Monday.

