ELEMENTARY NUMBER THEORY

HOMEWORK 4

(1) Show that $y^2 = x^3 + 7$ has no integer solutions.

Hints: (This proof is due to V.A. Lebesgue)

- (a) Show that x is odd.
- (b) Write the equation as $y^2 + 1 = x^3 + 8$ and factor the right hand side.
- (c) Show that the quadratic factor is divisible by some prime $p \equiv 3 \mod 4$
- (d) Look at the left hand side.
- (2) Generalize the preceding exercise to an infinite family of diophantine equations $y^2 = x^3 + c$.

This is already a research problem, although I think that the most natural generalization $(y^2 = x^3 + m^3 - n^2)$ is discussed quite often in the literature (one would have to check Mordell's book on diophantine equations). I do not know whether generalizations of the form $y^2 = x^3 + m^3 - kn^2$ for integers $k \neq 1$ are known. If you can find a nontrivial result in this direction before the end of the semester, let me know!

- (3) (This is a conjecture by Euler) Prove that if $p \equiv 1 \mod 4$ is prime and $a = \frac{p-1}{4} n n^2$, then (q/p) = +1 for every $q \mid a$.
- (4) (Euler) If $p \equiv 1 \mod 4$ is prime, then $\frac{p-1}{4} n(n+1)$ is a quadratic residue modulo p for every integer n.

The homework will be collected in class next Monday.