
ELEMENTARY NUMBER THEORY

HOMEWORK 2

(1) Show that there are infinitely many primes of the form p ≡ 3 mod 4 by
modifying Euclid’s proof.

Assume that p1 = 3, . . . , pn are primes of the form pj ≡ 3 mod 4. We
will construct a new one by looking at N = 4p1 · · · pn − 1 (putting N =
4p1 · · · pn+3 would also work). First, none of the primes pj divides N : note
that pj | N+1, so if we had pj | N , then we would have pj | (N+1)−N = 1:
contradiction. Now we observe that at least one of the prime factors of N
has the form p ≡ 3 mod 4: in fact, N is odd, hence if such a prime does
not exist, then all prime factors of N have the form p ≡ 1 mod 4; but then
we would have N ≡ 1 mod 4 contradicting the construction of N .

Why does this trick not work for primes p ≡ 1 mod 4?
If we put N = 4p1 · · · pn + 1, then N ≡ 1 mod 4, but we have no way

of ensuring that N has some prime factor of the form p ≡ 1 mod 4. For
example, starting with p1 = 5 we get N = 4 · 5 + 1 = 21, and 21 = 3 · 7.

Nevertheless it is possible to prove that there exist infinitely many primes
of the form p ≡ 1 mod 4: all we have to do is put N = 4(p1 · · · pn)2+1. Then
pj - N ; moreover, if p is aprime factor of N , then 4(p1 · · · pn)2 ≡ −1 mod p;
but −1 is a quadratic residue modulo p if and only if p ≡ 1 mod 4. The
rest of the proof goes through unchanged.

(2) Prove that
(a) gcd(ma,mb) = m · gcd(a, b);
(b) gcd(a, b) = gcd(a, a + b).

(a) gcd(ma,mb) = m · gcd(a, b).
Let d = gcd(a, b); then d | a and d | b, hence md | ma and md | mb.
This shows that md | gcd(ma,mb).
Now assume that e | ma and e | mb. The Bezout representation of d
is d = ax + by; this gives us md = max + mby, and since e divides the
right hand side, we must have e | md.

(b) gcd(a, b) = gcd(a, a + b).
If d | a and d | b, then d | a and d | (a+b). Thus gcd(a, b) | gcd(a, a+b).
On the other hand, if d | a and d | (a+b), then d | a and d | (a+b)−a =
b, hence gcd(a, a + b) | gcd(a, b).
This shows that gcd(a, b) = gcd(a, a + b).
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(3) Show that if n = x2 + 2y2 is odd, then n ≡ 1, 3 mod 8.

If n is odd, then x must be odd, hence x2 ≡ 1 mod 8. Moreover, y2 ≡
0, 1, 4 mod 8, hence 2y2 ≡ 0, 2 mod 8. This shows that n = x2 + 2y2 ≡
1, 3 mod 8.

(4) Compute the last digit of 7100.

The last digit of a number N can be determined by computing N mod
10. Now 72 = 49 ≡ −1 mod 10, hence 74 ≡ 1 mod 10 and finally 7100 =
(74)25 ≡ 125 ≡ 1 mod 10. Thus the last digit of 7100 is 1.

A calculation with pari shows that 7100 = 32344 . . . 060001.

(5) Observe that 217 ≡ 2 + 1 + 7 ≡ 1 mod 9. Find a generalization and prove
it.

Let N = an10n + . . . + 10a1 + a0 be the representation of an integer in
the decimal system. Then N ≡ an + . . .+a1+a0 mod 9 since 10 ≡ 1 mod 9.


