ELEMENTARY NUMBER THEORY

HOMEWORK 2

(1) Show that there are infinitely many primes of the form $p \equiv 3 \bmod 4$ by modifying Euclid's proof.

Assume that $p_{1}=3, \ldots, p_{n}$ are primes of the form $p_{j} \equiv 3 \bmod 4$. We will construct a new one by looking at $N=4 p_{1} \cdots p_{n}-1$ (putting $N=$ $4 p_{1} \cdots p_{n}+3$ would also work). First, none of the primes p_{j} divides N : note that $p_{j} \mid N+1$, so if we had $p_{j} \mid N$, then we would have $p_{j} \mid(N+1)-N=1$: contradiction. Now we observe that at least one of the prime factors of N has the form $p \equiv 3 \bmod 4$: in fact, N is odd, hence if such a prime does not exist, then all prime factors of N have the form $p \equiv 1 \bmod 4$; but then we would have $N \equiv 1 \bmod 4$ contradicting the construction of N.

Why does this trick not work for primes $p \equiv 1 \bmod 4$?
If we put $N=4 p_{1} \cdots p_{n}+1$, then $N \equiv 1 \bmod 4$, but we have no way of ensuring that N has some prime factor of the form $p \equiv 1 \bmod 4$. For example, starting with $p_{1}=5$ we get $N=4 \cdot 5+1=21$, and $21=3 \cdot 7$.

Nevertheless it is possible to prove that there exist infinitely many primes of the form $p \equiv 1 \bmod 4$: all we have to do is put $N=4\left(p_{1} \cdots p_{n}\right)^{2}+1$. Then $p_{j} \nmid N$; moreover, if p is aprime factor of N, then $4\left(p_{1} \cdots p_{n}\right)^{2} \equiv-1 \bmod p$; but -1 is a quadratic residue modulo p if and only if $p \equiv 1 \bmod 4$. The rest of the proof goes through unchanged.
(2) Prove that
(a) $\operatorname{gcd}(m a, m b)=m \cdot \operatorname{gcd}(a, b)$;
(b) $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, a+b)$.
(a) $\operatorname{gcd}(m a, m b)=m \cdot \operatorname{gcd}(a, b)$.

Let $d=\operatorname{gcd}(a, b)$; then $d \mid a$ and $d \mid b$, hence $m d \mid m a$ and $m d \mid m b$. This shows that $m d \mid \operatorname{gcd}(m a, m b)$.
Now assume that $e \mid m a$ and $e \mid m b$. The Bezout representation of d is $d=a x+b y$; this gives us $m d=m a x+m b y$, and since e divides the right hand side, we must have $e \mid m d$.
(b) $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, a+b)$.

If $d \mid a$ and $d \mid b$, then $d \mid a$ and $d \mid(a+b)$. Thus $\operatorname{gcd}(a, b) \mid \operatorname{gcd}(a, a+b)$. On the other hand, if $d \mid a$ and $d \mid(a+b)$, then $d \mid a$ and $d \mid(a+b)-a=$ b, hence $\operatorname{gcd}(a, a+b) \mid \operatorname{gcd}(a, b)$.
This shows that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, a+b)$.
(3) Show that if $n=x^{2}+2 y^{2}$ is odd, then $n \equiv 1,3 \bmod 8$.

If n is odd, then x must be odd, hence $x^{2} \equiv 1 \bmod 8$. Moreover, $y^{2} \equiv$ $0,1,4 \bmod 8$, hence $2 y^{2} \equiv 0,2 \bmod 8$. This shows that $n=x^{2}+2 y^{2} \equiv$ $1,3 \bmod 8$.
(4) Compute the last digit of 7^{100}.

The last digit of a number N can be determined by computing $N \bmod$ 10. Now $7^{2}=49 \equiv-1 \bmod 10$, hence $7^{4} \equiv 1 \bmod 10$ and finally $7^{100}=$ $\left(7^{4}\right)^{25} \equiv 1^{25} \equiv 1 \bmod 10$. Thus the last digit of 7^{100} is 1 .

A calculation with pari shows that $7^{100}=32344 \ldots 060001$.
(5) Observe that $217 \equiv 2+1+7 \equiv 1 \bmod 9$. Find a generalization and prove it.

Let $N=a_{n} 10^{n}+\ldots+10 a_{1}+a_{0}$ be the representation of an integer in the decimal system. Then $N \equiv a_{n}+\ldots+a_{1}+a_{0} \bmod 9$ since $10 \equiv 1 \bmod 9$.

