ELEMENTARY NUMBER THEORY

HOMEWORK 2

(1) Show that there are infinitely many primes of the form $p \equiv 3 \bmod 4$ by modifying Euclid's proof.
Why does this trick not work for primes $p \equiv 1 \bmod 4$?
(2) Prove that
(a) $\operatorname{gcd}(m a, m b)=m \cdot \operatorname{gcd}(a, b)$;
(b) $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, a+b)$.
(3) Show that if $n=x^{2}+2 y^{2}$ is odd, then $n \equiv 1,3 \bmod 8$.
(4) Compute the last digit of 7^{100}.
(5) Observe that $217 \equiv 2+1+7 \equiv 1 \bmod 9$. Find a generalization and prove it.

The homework will be collected in class on Monday, February 21

