ELEMENTARY NUMBER THEORY

HOMEWORK 1

(1) Prove the cancellation law in \mathbb{N} : if $x, y, z \in \mathbb{N}$ satisfy x + z = y + z, then x = y.

Statements about natural numbers have to be proved by induction (what else?). Thus take $x, y \in \mathbb{N}$ and set $S = \{z \in \mathbb{N} : x + z = y + z \Longrightarrow x = y\}$. Then clearly $0 \in S$ since x + 0 = x and y + 0 = y. Now assume that $z \in S$; we have to show $s(z) \in S$. Suppose therefore that x + s(z) = y + s(z). Since x + s(z) = s(x + z) we see that s(x + z) = s(y + z). By Axiom N4 we conclude that x + z = y + z, and the induction assumption gives x = y. Thus $s(x) \in S$, hence $S = \mathbb{N}$.

The following proof is not correct as it stands: Suppose therefore that x + s(z) = y + s(z). We have proved that x + s(z) = s(x) + z and y + s(z) = s(y) + z; this shows s(x) + z = s(y) + z. By induction assumption, this implies s(x) = s(y), hence x = y.

Where is the error? The induction assumption tells us what to do with x + z = y + z, not with s(x) + z = s(y) + z (look at the definition of the set S if you don't believe me)!

- (2) Consider the set $N = \{0, 1\}$ with successor function $s : N \longrightarrow N$ mapping $0 \longmapsto 1$ and $1 \longmapsto 0$. Show that this system satisfies all Peano axioms except one which one?
 - N1: $0 \in N$
 - N2: $x \in N$ implies $s(x) \in N$
 - N3: not satisfied since s(1) = 0
 - N4: s is injective
 - N5: if S contains 0 and s(0), then S = N.

Thus only N3 is not satisfied.

(3) Show that [r, s] * [t, u] = [rt, su] is not well defined on \mathbb{Z} .

We have [2, 1] * [2, 1] = [4, 1]; but [2, 1] = [3, 2] and [3, 2] * [3, 2] = [9, 4] although $[4, 1] \neq [9, 4]$.

(4) Prove that addition on \mathbb{Z} is commutative.

This is done by reduction to \mathbb{N} :

[r,s] + [t,u] = [r+t,s+u]	by definition of addition
= [t+r, u+s]	by commutativity in $\mathbb N$
= [t, u] + [r, s]	by definition of addition

HOMEWORK 1

(5) Consider the monoid $M = 2\mathbb{Z} \cup \{1\} = \{1, 2, 4, 6, 8, \ldots\}$. Show that M does not contain any prime, and find all irreducible elements in M.

bigskip

1 is not a prime because it is a unit. Every nonunit has the form 2n for some $n \in \mathbb{N}$. Then $2n \mid 6n \cdot (6n)$ because $6n \cdot 6n = 36n^2$ and $36n^2 = 2n \cdot 18n$. On the other hand, $2n \nmid 6n$ because the quotient 3 is not in M. Thus M has no primes.

What are the irreducible elements? We can factor $4n = 2 \cdot 2n$, so elements o the form 4n are not irreducible. We claim that 4n + 2 is irreducible. If not, then it has to have a nontrivial factorization (one not involving the unit 1), hence 4n + 2 = (2r)(2s); but this is nonsense since the right hand side is divisible by 4. Thus the irreducible elements are those of the form 4n + 2.

 $\mathbf{2}$