ELEMENTARY NUMBER THEORY

HOMEWORK 1

(1) Prove the cancellation law in \mathbb{N} : if $x, y, z \in \mathbb{N}$ satisfy $x+z=y+z$, then $x=y$.
(2) Consider the set $N=\{0,1\}$ with successor function $s: N \longrightarrow N$ mapping $0 \longmapsto 1$ and $1 \longmapsto 0$. Show that this system satisfies all Peano axioms except one - which one?
(3) Show that $[r, s] *[t, u]=[r t, s u]$ is not well defined on \mathbb{Z}.
(4) Prove that addition on \mathbb{Z} is commutative.
(5) Consider the monoid $M=2 \mathbb{Z} \cup\{1\}=\{1,2,4,6,8, \ldots\}$. Show that M does not contain any prime, and find all irreducible elements in M.

The homework will be collected in class on Monday, February 14.

