ELEMENTARY NUMBER THEORY

HOMEWORK 1

- (1) Prove the cancellation law in \mathbb{N} : if $x, y, z \in \mathbb{N}$ satisfy x + z = y + z, then x = y.
- (2) Consider the set $N = \{0, 1\}$ with successor function $s : N \longrightarrow N$ mapping $0 \longmapsto 1$ and $1 \longmapsto 0$. Show that this system satisfies all Peano axioms except one which one?
- (3) Show that [r, s] * [t, u] = [rt, su] is not well defined on \mathbb{Z} .
- (4) Prove that addition on \mathbb{Z} is commutative.
- (5) Consider the monoid $M = 2\mathbb{Z} \cup \{1\} = \{1, 2, 4, 6, 8, \ldots\}$. Show that M does not contain any prime, and find all irreducible elements in M.

The homework will be collected in class on Monday, February 14.