ELEMENTARY NUMBER THEORY

MIDTERM II

(1) Compute $\operatorname{gcd}(1-4 \sqrt{-2}, 4+\sqrt{-2})$ using the Euclidean algorithm, as well as the corresponding Bezout representation.

$$
1-4 \sqrt{-2}=(4+\sqrt{-2})(-\sqrt{-2})+1 .
$$

hence $\operatorname{gcd}(1-4 \sqrt{-2}, 4+\sqrt{-2})=1$, and Bezout is trivial. I actually meant to ask $\operatorname{gcd}(1-4 \sqrt{-2}, 4-\sqrt{-2})$.
(2) (a) Show that $\alpha^{2} \equiv 0,1 \bmod 2$ for every $\alpha \in \mathbb{Z}[\sqrt{-2}]$.

Write $\alpha=a+b \sqrt{-2}$. Then $\alpha^{2}=a^{2}-2 b^{2}+2 a b \sqrt{-2} \equiv a^{2} \equiv 0,1 \bmod 2$. Actually, the calculation shows that $\alpha^{2} \equiv a^{2}-2 b^{2} \equiv 0, \pm 1,2 \bmod$ $2 \sqrt{-2}$.
(b) Assume that $\pi \in \mathbb{Z}[\sqrt{-2}]$ has odd norm and can be written in the form $\pi=\alpha^{2}+2 \beta^{2}$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$. Show that $\pi \equiv 1 \bmod 2$. $\pi \equiv \alpha^{2} \equiv 0,1 \bmod 2$, and if $\pi \equiv 0 \bmod 2$ then $N \pi$ would be even.
(c) Show that if $\pi \equiv 1 \bmod 2$, then either $\pi \equiv 1 \bmod 2 \sqrt{-2}$ or $-\pi \equiv$ $1 \bmod 2 \sqrt{-2}$.
Write $\pi=a+b \sqrt{-2}$. From $\pi \equiv 1 \bmod 2$ we deduce that a is odd and b is even, hence $\pi \equiv a \bmod 2 \sqrt{-2}$. But $a \equiv \pm 1 \bmod 4$, hence $\pi \equiv \pm 1 \bmod 2 \sqrt{-2}$.
(d) Show that every $\pi \in \mathbb{Z}[\sqrt{-2}]$ with $\pi \equiv 1 \bmod 2 \sqrt{-2}$ can be written in the form $\pi=\alpha^{2}+2 \beta^{2}$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$.
We have $\pi=\alpha^{2}+2 \beta^{2}=(\alpha+\beta \sqrt{-2})(\alpha-\beta \sqrt{-2})$. Putting $\alpha=\frac{\pi+1}{2}$ and $\beta=\frac{\pi-1}{2 \sqrt{-2}}$ solves the problem.
(3) Let $\pi=a+b i$ be a prime in $\mathbb{Z}[i]$ with $N \pi=p \equiv 1 \bmod 4$. Prove that $\left[\frac{1+2 i}{a+b i}\right]=\left(\frac{a+2 b}{p}\right)$.

We have $a \equiv-b i \bmod \pi$, hence $a i \equiv b \bmod \pi$. Moreover $\left[\frac{a}{\pi}\right]=\left(\frac{a}{p}\right)=1$ as usual. Thus $\left[\frac{1+2 i}{a+b i}\right]=\left[\frac{a+2 a i}{a+b i}\right]=\left[\frac{a+2 b}{a+b i}\right]=\left(\frac{a+2 b}{p}\right)$, where the last equality is also proved as usual.
(4) Show that, for $\alpha=a+b i \in \mathbb{Z}[i]$, we have $\alpha \equiv 1 \bmod 2+2 i$ if and only if $2 \mid b$ and $a+b \equiv 1 \bmod 4$.
$a+b i \equiv 1 \bmod 2+2 i$ is equivalent to $\frac{a-1+b i}{2+2 i}$ being a Gaussian integer. But $\frac{a-1+b i}{2+2 i}=\frac{(a-1+b i)((1-i)}{4}=\frac{a-1+b}{4}+\frac{b-a+1}{4} i$. Thus we must have $a+b-$ $1 \equiv-a+b+1 \equiv 0 \bmod 4$. Adding gives $2 b \equiv 0 \bmod 4$, hence $2 \mid b$.
(5) Assume that $F=A^{2}+B^{2}$ for $A, B, F \in \mathbb{F}_{p}[X]$, where $p \equiv 3 \bmod 4$. Show that $\operatorname{deg} F$ is even.

Write $A=a_{m} X^{m}+\ldots, B=b_{n} X^{n}+\ldots$. If the degrees are different, say if $m>n$, then $A^{2} B^{2}=a_{m}^{2} X^{2 m}+\ldots$ has even degree. If $m=n$, then $A^{2}+B^{2}=\left(a_{m}^{2}+b_{m}^{2}\right) X^{2 m}+\ldots$, and the coefficient $a_{m}^{2}+b_{m}^{2}$ is nonzero because otherwise $-1 \equiv\left(a_{m} / b_{m}\right)^{2} \bmod p$, which contradicts the fact that $p \equiv 3 \bmod 4$.
(6) Compute the Jacobi symbol $\left(\frac{X^{3}}{X^{2}+1}\right)$ in $\mathbb{F}_{3}[X]$.

$$
\left(\frac{X^{3}}{X^{2}+1}\right)=\left(\frac{X}{X^{2}+1}\right)^{3}=\left(\frac{X}{X^{2}+1}\right) \equiv X^{4} \equiv 1 \bmod X^{2}+1, \text { hence }\left(\frac{X^{3}}{X^{2}+1}\right)=1 .
$$

(7) Compute an approximation modulo 5^{3} of the multiplicative inverse of the 5 -adic number $2+3 \cdot 5+1 \cdot 5^{2}+\ldots$.
$\left(2+3 \cdot 5+1 \cdot 5^{2}+\ldots\right)\left(a+5 b+5^{2} c+\ldots\right)=1$ gives $a=3,2 \cdot 3+(3 \cdot 3+$ $2 b) 5 \equiv 1 \bmod 5^{2}$, hence $3 \cdot 3+2 b \equiv-1 \bmod 5$ and therefore $b=0$; finally $\left(2+3 \cdot 5+1 \cdot 5^{2}+\ldots\right)\left(3+5^{2} c+\ldots\right)=1$ shows $6+9 \cdot 5+(3+2 c) \cdot 5^{2} \equiv 1 \bmod 5^{3}$, hence $3+2 c \equiv-2 \bmod 5$ and $c=0$.

In fact, $3\left(2+3 \cdot 5+1 \cdot 5^{2}+\ldots\right)=6+9 \cdot 5+3 \cdot 5^{2}+\ldots=1+10 \cdot 5+3 \cdot 5^{2}+\ldots=$ $1+0 \cdot 5+5 \cdot 5^{2}+\ldots=1+0 \cdot 5+0 \cdot 5^{2}+\ldots$.
(8) Show that $\frac{1}{2} \in \mathbb{Z}_{5}$, and give an approximation modulo 5^{3} of this 5 -adic integer.
$\frac{1}{2}=\frac{2}{4}=-2 \frac{1}{1-5}$, and $\frac{1}{1-5}=1+5+5^{2}+5^{3}+\ldots$, so $\frac{1}{2} \in \mathbb{Z}_{5}$. For the approximation, observe that $-2\left(1+5+5^{2}+\ldots\right)=-2-2 \cdot 5-2 \cdot 5^{2}+\ldots=$ $3-3 \cdot 5-2 \cdot 5^{2}+\ldots=3+2 \cdot 5-3 \cdot 5^{2}+\ldots=3+2 \cdot 5+2 \cdot 5^{2}+\ldots$, hence $\frac{1}{2} \equiv 3+2 \cdot 5+2 \cdot 5^{2} \bmod 5^{3}$.

Or: $\frac{1}{2} \equiv \frac{1}{2}\left(1+5^{3}\right)=63 \bmod 5^{3}$.

