ELEMENTARY NUMBER THEORY

MIDTERM II

(1) Compute $gcd(1 - 4\sqrt{-2}, 4 + \sqrt{-2})$ using the Euclidean algorithm, as well as the corresponding Bezout representation.

$$1 - 4\sqrt{-2} = (4 + \sqrt{-2})(-\sqrt{-2}) + 1.$$

hence $gcd(1-4\sqrt{-2}, 4+\sqrt{-2}) = 1$, and Bezout is trivial. I actually meant to ask $gcd(1-4\sqrt{-2}, 4-\sqrt{-2})$.

(2) (a) Show that $\alpha^2 \equiv 0, 1 \mod 2$ for every $\alpha \in \mathbb{Z}[\sqrt{-2}]$.

Write $\alpha = a + b\sqrt{-2}$. Then $\alpha^2 = a^2 - 2b^2 + 2ab\sqrt{-2} \equiv a^2 \equiv 0, 1 \mod 2$. Actually, the calculation shows that $\alpha^2 \equiv a^2 - 2b^2 \equiv 0, \pm 1, 2 \mod 2\sqrt{-2}$.

(b) Assume that $\pi \in \mathbb{Z}[\sqrt{-2}]$ has odd norm and can be written in the form $\pi = \alpha^2 + 2\beta^2$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$. Show that $\pi \equiv 1 \mod 2$.

 $\pi \equiv \alpha^2 \equiv 0, 1 \mod 2$, and if $\pi \equiv 0 \mod 2$ then $N\pi$ would be even.

(c) Show that if $\pi \equiv 1 \mod 2$, then either $\pi \equiv 1 \mod 2\sqrt{-2}$ or $-\pi \equiv 1 \mod 2\sqrt{-2}$.

Write $\pi = a + b\sqrt{-2}$. From $\pi \equiv 1 \mod 2$ we deduce that a is odd and b is even, hence $\pi \equiv a \mod 2\sqrt{-2}$. But $a \equiv \pm 1 \mod 4$, hence $\pi \equiv \pm 1 \mod 2\sqrt{-2}$.

(d) Show that every $\pi \in \mathbb{Z}[\sqrt{-2}]$ with $\pi \equiv 1 \mod 2\sqrt{-2}$ can be written in the form $\pi = \alpha^2 + 2\beta^2$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$.

We have $\pi = \alpha^2 + 2\beta^2 = (\alpha + \beta\sqrt{-2})(\alpha - \beta\sqrt{-2})$. Putting $\alpha = \frac{\pi+1}{2}$ and $\beta = \frac{\pi-1}{2\sqrt{-2}}$ solves the problem.

(3) Let $\pi = a + bi$ be a prime in $\mathbb{Z}[i]$ with $N\pi = p \equiv 1 \mod 4$. Prove that $\left[\frac{1+2i}{a+bi}\right] = \left(\frac{a+2b}{p}\right)$.

We have $a \equiv -bi \mod \pi$, hence $ai \equiv b \mod \pi$. Moreover $\left[\frac{a}{\pi}\right] = \left(\frac{a}{p}\right) = 1$ as usual. Thus $\left[\frac{1+2i}{a+bi}\right] = \left[\frac{a+2ai}{a+bi}\right] = \left[\frac{a+2b}{a+bi}\right] = \left(\frac{a+2b}{p}\right)$, where the last equality is also proved as usual.

MIDTERM II

(4) Show that, for $\alpha = a + bi \in \mathbb{Z}[i]$, we have $\alpha \equiv 1 \mod 2 + 2i$ if and only if $2 \mid b \text{ and } a + b \equiv 1 \mod 4$.

 $a+bi\equiv 1 \mod 2+2i$ is equivalent to $\frac{a-1+bi}{2+2i}$ being a Gaussian integer. But $\frac{a-1+bi}{2+2i}=\frac{(a-1+bi)((1-i)}{4}=\frac{a-1+b}{4}+\frac{b-a+1}{4}i$. Thus we must have $a+b-1\equiv -a+b+1\equiv 0 \mod 4$. Adding gives $2b\equiv 0 \mod 4$, hence $2\mid b$.

(5) Assume that $F = A^2 + B^2$ for $A, B, F \in \mathbb{F}_p[X]$, where $p \equiv 3 \mod 4$. Show that deg F is even.

Write $A = a_m X^m + \ldots$, $B = b_n X^n + \ldots$ If the degrees are different, say if m > n, then $A^2 B^2 = a_m^2 X^{2m} + \ldots$ has even degree. If m = n, then $A^2 + B^2 = (a_m^2 + b_m^2) X^{2m} + \ldots$, and the coefficient $a_m^2 + b_m^2$ is nonzero because otherwise $-1 \equiv (a_m/b_m)^2 \mod p$, which contradicts the fact that $p \equiv 3 \mod 4$.

(6) Compute the Jacobi symbol $(\frac{X^3}{X^2+1})$ in $\mathbb{F}_3[X]$.

$$\left(\frac{X^3}{X^2+1}\right) = \left(\frac{X}{X^2+1}\right)^3 = \left(\frac{X}{X^2+1}\right) \equiv X^4 \equiv 1 \mod X^2 + 1$$
, hence $\left(\frac{X^3}{X^2+1}\right) = 1$.

(7) Compute an approximation modulo 5^3 of the multiplicative inverse of the 5-adic number $2 + 3 \cdot 5 + 1 \cdot 5^2 + \ldots$

 $(2+3\cdot 5+1\cdot 5^2+\ldots)(a+5b+5^2c+\ldots) = 1$ gives $a = 3, 2\cdot 3+(3\cdot 3+2b)5 \equiv 1 \mod 5^2$, hence $3\cdot 3+2b \equiv -1 \mod 5$ and therefore b = 0; finally $(2+3\cdot 5+1\cdot 5^2+\ldots)(3+5^2c+\ldots) = 1$ shows $6+9\cdot 5+(3+2c)\cdot 5^2 \equiv 1 \mod 5^3$, hence $3+2c \equiv -2 \mod 5$ and c = 0.

In fact, $3(2+3\cdot5+1\cdot5^2+\ldots) = 6+9\cdot5+3\cdot5^2+\ldots = 1+10\cdot5+3\cdot5^2+\ldots = 1+0\cdot5+5\cdot5^2+\ldots = 1+0\cdot5+0\cdot5^2+\ldots$

(8) Show that $\frac{1}{2} \in \mathbb{Z}_5$, and give an approximation modulo 5³ of this 5-adic integer.

 $\frac{1}{2} = \frac{2}{4} = -2\frac{1}{1-5}, \text{ and } \frac{1}{1-5} = 1+5+5^2+5^3+\dots, \text{ so } \frac{1}{2} \in \mathbb{Z}_5.$ For the approximation, observe that $-2(1+5+5^2+\dots) = -2-2\cdot5-2\cdot5^2+\dots = 3-3\cdot5-2\cdot5^2+\dots = 3+2\cdot5-3\cdot5^2+\dots = 3+2\cdot5+2\cdot5^2+\dots,$ hence $\frac{1}{2} \equiv 3+2\cdot5+2\cdot5^2 \mod 5^3.$

Or: $\frac{1}{2} \equiv \frac{1}{2}(1+5^3) = 63 \mod 5^3$.

 $\mathbf{2}$