
ELEMENTARY NUMBER THEORY

MIDTERM II

(1) Compute gcd(1− 4
√
−2, 4 +

√
−2 ) using the Euclidean algorithm, as well

as the corresponding Bezout representation.

1− 4
√
−2 = (4 +

√
−2 )(−

√
−2 ) + 1.

hence gcd(1−4
√
−2, 4+

√
−2 ) = 1, and Bezout is trivial. I actually meant

to ask gcd(1− 4
√
−2, 4−

√
−2 ).

(2) (a) Show that α2 ≡ 0, 1 mod 2 for every α ∈ Z[
√
−2 ].

Write α = a+b
√
−2. Then α2 = a2−2b2+2ab

√
−2 ≡ a2 ≡ 0, 1 mod 2.

Actually, the calculation shows that α2 ≡ a2 − 2b2 ≡ 0,±1, 2 mod
2
√
−2.

(b) Assume that π ∈ Z[
√
−2 ] has odd norm and can be written in the

form π = α2 + 2β2 for α, β ∈ Z[
√
−2 ]. Show that π ≡ 1 mod 2.

π ≡ α2 ≡ 0, 1 mod 2, and if π ≡ 0 mod 2 then Nπ would be even.

(c) Show that if π ≡ 1 mod 2, then either π ≡ 1 mod 2
√
−2 or −π ≡

1 mod 2
√
−2.

Write π = a + b
√
−2. From π ≡ 1 mod 2 we deduce that a is odd

and b is even, hence π ≡ a mod 2
√
−2. But a ≡ ±1 mod 4, hence

π ≡ ±1 mod 2
√
−2.

(d) Show that every π ∈ Z[
√
−2 ] with π ≡ 1 mod 2

√
−2 can be written

in the form π = α2 + 2β2 for α, β ∈ Z[
√
−2 ].

We have π = α2 + 2β2 = (α + β
√
−2 )(α− β

√
−2 ). Putting α = π+1

2

and β = π−1
2
√
−2

solves the problem.

(3) Let π = a + bi be a prime in Z[i] with Nπ = p ≡ 1 mod 4. Prove that
[ 1+2i
a+bi ] = (a+2b

p ).

We have a ≡ −bi mod π, hence ai ≡ b mod π. Moreover [ a
π ] = (a

p ) = 1
as usual. Thus [ 1+2i

a+bi ] = [a+2ai
a+bi ] = [a+2b

a+bi ] = (a+2b
p ), where the last equality

is also proved as usual.
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(4) Show that, for α = a + bi ∈ Z[i], we have α ≡ 1 mod 2 + 2i if and only if
2 | b and a + b ≡ 1 mod 4.

a + bi ≡ 1 mod 2 + 2i is equivalent to a−1+bi
2+2i being a Gaussian integer.

But a−1+bi
2+2i = (a−1+bi)((1−i)

4 = a−1+b
4 + b−a+1

4 i. Thus we must have a+ b−
1 ≡ −a + b + 1 ≡ 0 mod 4. Adding gives 2b ≡ 0 mod 4, hence 2 | b.

(5) Assume that F = A2 + B2 for A,B, F ∈ Fp[X], where p ≡ 3 mod 4. Show
that deg F is even.

Write A = amXm + . . ., B = bnXn + . . .. If the degrees are different,
say if m > n, then A2 B2 = a2

mX2m + . . . has even degree. If m = n, then
A2 + B2 = (a2

m + b2
m)X2m + . . ., and the coefficient a2

m + b2
m is nonzero

because otherwise −1 ≡ (am/bm)2 mod p, which contradicts the fact that
p ≡ 3 mod 4.

(6) Compute the Jacobi symbol ( X3

X2+1 ) in F3[X].

( X3

X2+1 ) = ( X
X2+1 )3 = ( X

X2+1 ) ≡ X4 ≡ 1 mod X2 + 1, hence ( X3

X2+1 ) = 1.

(7) Compute an approximation modulo 53 of the multiplicative inverse of the
5-adic number 2 + 3 · 5 + 1 · 52 + . . ..

(2 + 3 · 5 + 1 · 52 + . . .)(a + 5b + 52c + . . .) = 1 gives a = 3, 2 · 3 + (3 · 3 +
2b)5 ≡ 1 mod 52, hence 3 · 3 + 2b ≡ −1 mod 5 and therefore b = 0; finally
(2+3·5+1·52+. . .)(3+52c+. . .) = 1 shows 6+9·5+(3+2c)·52 ≡ 1 mod 53,
hence 3 + 2c ≡ −2 mod 5 and c = 0.

In fact, 3(2+3·5+1·52+. . .) = 6+9·5+3·52+. . . = 1+10·5+3·52+. . . =
1 + 0 · 5 + 5 · 52 + . . . = 1 + 0 · 5 + 0 · 52 + . . ..

(8) Show that 1
2 ∈ Z5, and give an approximation modulo 53 of this 5-adic

integer.
1
2 = 2

4 = −2 1
1−5 , and 1

1−5 = 1 + 5 + 52 + 53 + . . ., so 1
2 ∈ Z5. For the

approximation, observe that −2(1+5+52 + . . .) = −2−2 ·5−2 ·52 + . . . =
3− 3 · 5− 2 · 52 + . . . = 3 + 2 · 5− 3 · 52 + . . . = 3 + 2 · 5 + 2 · 52 + . . ., hence
1
2 ≡ 3 + 2 · 5 + 2 · 52 mod 53.

Or: 1
2 ≡

1
2 (1 + 53) = 63 mod 53.


