ELEMENTARY NUMBER THEORY

MIDTERM II

NAME: \qquad

problem	1	2	3	4	5	6	7	8
points to earn	15	20	10	10	15	10	10	10
points earned								

(1) Compute $\operatorname{gcd}(1-4 \sqrt{-2}, 4+\sqrt{-2})$ using the Euclidean algorithm, as well as the corresponding Bezout representation.
(2) (a) Show that $\alpha^{2} \equiv 0,1 \bmod 2$ for every $\alpha \in \mathbb{Z}[\sqrt{-2}]$.
(b) Assume that $\pi \in \mathbb{Z}[\sqrt{-2}]$ has odd norm and can be written in the form $\pi=\alpha^{2}+2 \beta^{2}$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$. Show that $\pi \equiv 1 \bmod 2$.
(c) Show that if $\pi \equiv 1 \bmod 2$, then either $\pi \equiv 1 \bmod 2 \sqrt{-2}$ or $-\pi \equiv$ $1 \bmod 2 \sqrt{-2}$.
(d) Show that every $\pi \in \mathbb{Z}[\sqrt{-2}]$ with $\pi \equiv 1 \bmod 2 \sqrt{-2}$ can be written in the form $\pi=\alpha^{2}+2 \beta^{2}$ for $\alpha, \beta \in \mathbb{Z}[\sqrt{-2}]$.
(3) Let $\pi=a+b i$ be a prime in $\mathbb{Z}[i]$ with $N \pi=p \equiv 1 \bmod 4$. Prove that $\left[\frac{1+2 i}{a+b i}\right]=\left(\frac{a+2 b}{p}\right)$.
(4) Show that, for $\alpha=a+b i \in \mathbb{Z}[i]$, we have $\alpha \equiv 1 \bmod 2+2 i$ if and only if $2 \mid b$ and $a+b \equiv 1 \bmod 4$.
(5) Assume that $F=A^{2}+B^{2}$ for $A, B, F \in \mathbb{F}_{p}[X]$, where $p \equiv 3 \bmod 4$. Show that $\operatorname{deg} F$ is even.
(6) Compute the Jacobi symbol $\left(\frac{X^{3}}{X^{2}+1}\right)$ in $\mathbb{F}_{3}[X]$.
(7) Compute an approximation modulo 5^{3} of the multiplicative inverse of the 5 -adic number $2+3 \cdot 5+1 \cdot 5^{2}+\ldots$.
(8) Show that $\frac{1}{2} \in \mathbb{Z}_{5}$, and give an approximation modulo 5^{3} of this 5 -adic integer.

