ELEMENTARY NUMBER THEORY

MIDTERM II

(1) Compute gcd(9 + i, 5 + 3i) using the Euclidean algorithm, as well as the corresponding Bezout representation.

$$9 + i = (5 + 3i)(1 - i) + (1 + 3i)$$

$$5 + 3i = (1 + 3i)(1 - i) + 1 + i$$

$$1 + 3i = (1 + i)(2 + i)$$

Thus gcd(9 + i, 5 + 3i) = 1 + i. To find the Bezout representation, we compute

$$1 + i = 5 + 3i - (1 + 3i)(1 - i)$$

= 5 + 3i - (9 + i - (5 + 3i)(1 - i))(1 - i)
= (5 + 3i)(1 - 2i) - (9 + i)(1 - i).

Thus 1 + i = (5 + 3i)(1 - 2i) - (9 + i)(1 - i).

(2) (a) Show that $\{0, 1, i, 1+i\}$ is a complete system of residue classes modulo 2 in $\mathbb{Z}[i]$.

Let $\alpha = a + bi$. Reduction modulo 2 shows that $\alpha \equiv 0, 1, i, 1 + i \mod 2$. Moreover, none of these residue classes are equal since their differences 1, i, 1 + i are not divisible by 2.

(b) Show that $\alpha^2 \equiv 0, 1 \mod 2$ for every $\alpha \in \mathbb{Z}[i]$.

The squares of the residue classes $0, 1, i, 1 + i \mod 2$ are 0 or 1 mod 2. Or directly: $(a + bi)^2 = a^2 - b^2 + 2abi \equiv a^2 - b^2 \equiv 0, 1 \mod 2$.

(c) Assume that $\pi \in \mathbb{Z}[i]$ has odd norm and can be written in the form $\pi = \alpha^2 + \beta^2$ for $\alpha, \beta \in \mathbb{Z}[i]$. Show that $\pi \equiv 1 \mod 2$.

We have $\pi = \alpha^2 + \beta^2 \equiv 0, 1, 2 \mod 4$; since $N\pi$ is odd, we must have $\pi \equiv 1 \mod 2$.

(d) Show that any $\pi \in \mathbb{Z}[i]$ with $\pi \equiv 1 \mod 2$ can be written in the form $\pi = \alpha^2 + \beta^2$ for $\alpha, \beta \in \mathbb{Z}[i]$.

We have $\pi = \alpha^2 + \beta^2 = (\alpha + i\beta)(\alpha - i\beta)$. From $\alpha + i\beta = \pi$ and $\alpha - i\beta = 1$ we get $\alpha = \frac{\pi + 1}{2}$ and $\beta = \frac{\pi - 1}{2i}$, and since $\pi \equiv 1 \mod 2$ these are Gaussian integers.

(e) Write 1 + 4i as a sum of two squares in $\mathbb{Z}[i]$.

 $1 + 4i = (1 + 2i)^2 + 2^2.$

MIDTERM II

(3) Compute the quadratic residue symbols $\left[\frac{1+i}{1+2i}\right]$ and $\left[\frac{1+i}{1+4i}\right]$ using Euler's criterium.

$$\begin{array}{l} [\frac{1+i}{1+2i}] \equiv (1+i)^2 = 2i \equiv -1 \mod 1 + 2i, \ \text{hence} \ [\frac{1+i}{1+2i}] = -1. \\ [\frac{1+i}{1+4i}] \equiv (1+i)^8 = (2i)^4 \equiv 2^4 \equiv -1 \mod 1 + 4i, \ \text{hence} \ [\frac{1+i}{1+4i}] = -1. \end{array}$$

This agrees with the next exercise: $[\frac{1+i}{1+2i}] = (\frac{2}{3}) = -1, \ [\frac{1+i}{1+4i}] = (\frac{2}{5}) = -1$

- (4) Let $\pi = a + bi \equiv 1 \mod 2$ be a prime in $\mathbb{Z}[i]$, and assume that $N\pi = p$ is prime in \mathbb{Z} . Prove that $\left[\frac{1+i}{a+bi}\right] = \left(\frac{2}{a+b}\right)$. Hints:
 - (a) Prove that $\left[\frac{m}{\pi}\right] = \left(\frac{m}{p}\right)$, where $p = N\pi = a^2 + b^2$ and where m is an odd integer not divisible by p. We have $\left[\frac{m}{\pi}\right] \equiv m^{(N\pi-1)/2} = m^{(p-1)/2} \mod \pi$ and $\left(\frac{m}{p}\right) \equiv m^{(p-1)/2} \mod p$. Since p is a multiple of π , we conclude that $\left[\frac{m}{\pi}\right] \equiv \left(\frac{m}{p}\right) \mod \pi$. Thus π divides the difference, and this implies that the symbols are equal.
 - (b) Prove that $\left[\frac{a}{\pi}\right] = 1$. $\left[\frac{a}{\pi}\right] = \left(\frac{a}{p}\right) = \left(\frac{p}{a}\right) = 1$ since $p \equiv 1 \mod 4$ and $p = a^2 + b^2 \equiv b^2 \mod p$.
 - (c) Prove that $ai \equiv b \mod \pi$. Multiply $a \equiv -bi \mod \pi$ by i.
 - (d) Use b) and c) to prove that $\left[\frac{1+i}{a+bi}\right] = \left[\frac{a+b}{a+bi}\right]$. $\left[\frac{1+i}{a+bi}\right] = \left[\frac{a+ai}{a+bi}\right] = \left[\frac{a+b}{a+bi}\right]$.
 - (e) Complete the proof by evaluating the last symbol. $\left[\frac{a+b}{a+bi}\right] = \left(\frac{a+b}{p}\right) = \left(\frac{p}{a+b}\right)$. Now $p = a^2 + b^2 \equiv a^2 + b^2 + (a^2 b^2) = 2a^2 \mod (a+b)$, hence $\left(\frac{p}{a+b}\right) = \left(\frac{2a^2}{a+b}\right) = \left(\frac{2}{a+b}\right)$.
- (5) Find all monic irreducible polynomials of the form $X^3 + aX^2 + 1$ in $\mathbb{F}_3[X]$.

We have f(0) = 1, f(1) = a - 1 and f(2) = a in \mathbb{F}_3 . Now f is irreducible if and only if it does not have a root, that is, if and only if $a \neq 0$ and $a \neq 1$. Thus $X^3 + 2X^2 + 1$ is the only irreducible polynomial of the form $X^3 + aX^2 + 1$ in $\mathbb{F}_3[X]$.

(6) Find the prime factorization of $X^4 + 1$ in $\mathbb{F}_5[X]$.

 $X^4 + 1 = X^4 - 4 = (X^2 + 2)(X^2 - 2)$, and both factors are irreducible since $a^2 \pm 2 \not\equiv 0 \mod 5$.

 $\mathbf{2}$

(7) Show that $P = X^2 + 1$ and $Q = X^3 - X + 1$ are irreducible in $\mathbb{F}_3[X]$, and compute the quadratic residue symbols $(\frac{P}{Q})$ and $(\frac{Q}{P})$.

 $\begin{array}{l} P(0)=1, \ P(\pm 1)=2, \ \text{hence} \ P \ \text{is irreducible. Similarly,} \ Q(0)=Q(1)=Q(2)=1.\\ (\frac{Q}{P})\equiv (X^3-X+1)^4\equiv (X+1)^4=(X^2+2X+1)^2\equiv 4X^2\equiv -1 \ \text{mod} \ P, \end{array}$

 $\binom{Q}{P} = (A - A + 1) = (A + 1) = (A + 2A + 1) = 4A = 1 \mod A$ hence $\binom{Q}{P} = -1$.

Using quadratic reciprocity, we also find $(\frac{P}{Q}) = -1$. The direct calculation goes like this: $(\frac{P}{Q}) \equiv (X^2 + 1)^{13} \mod Q$. Now $P^3 = (X^2 + 1)^3 = X^6 + 1 \equiv (X-1)^2 + 1 = X^2 + X - 1 \mod Q$ since $X^3 \equiv X - 1 \mod Q$. Next $P^6 \equiv (X^2 + X - 1)^2 = X^4 + 2X^3 - X^2 - 2X + 1 \equiv -X - 1 \mod Q$, hence $P^{12} \equiv X^2 + 2X + 1 \mod Q$ and $P^{13} \equiv (X^2 + 2X + 1)(X^2 + 1) \equiv -1 \mod Q$.

(8) Show that $X^2 + X + 1 = 0$ does not have a solution in \mathbb{Z}_5 . How many different solutions does $X^2 + X + 1 = 0$ have in \mathbb{Z}_7 ? Find the approximation modulo 7² to one of them.

Assume that $x \in \mathbb{Z}_5$ satisfies $x^2 + x + 1 = 0$. Then there is an integer a with $x \equiv a \mod 5$ and $a^2 + a + 1 \equiv 0 \mod 5$. This congruence does not have a solution, hence there is no such 5-adic number.

Playing the same game in \mathbb{Z}_7 we see that there should be two 7-adic numbers x with $x^2 + x + 1 = 0$, one with $x \equiv 2 \mod 7$ and one with $x \equiv 4 \mod 7$. Using induction it can be proved that both lift to solutions in \mathbb{Z}_7 . For finding approximations modulo 7², put z = 2 + 7y; then $0 \equiv z^2 + z + 1 \equiv 7 + 35a \mod 7^2$ gives $1 + 5a \equiv 0 \mod 7$ and a = 4. Thus the desired approximation of z is $z \equiv 2 + 4 \cdot 7 \mod 7^2$.