ELEMENTARY NUMBER THEORY

MIDTERM II

(1) Compute $\operatorname{gcd}(9+i, 5+3 i)$ using the Euclidean algorithm, as well as the corresponding Bezout representation.

$$
\begin{aligned}
9+i & =(5+3 i)(1-i)+(1+3 i) \\
5+3 i & =(1+3 i)(1-i)+1+i \\
1+3 i & =(1+i)(2+i)
\end{aligned}
$$

Thus $\operatorname{gcd}(9+i, 5+3 i)=1+i$. To find the Bezout representation, we compute

$$
\begin{aligned}
1+i & =5+3 i-(1+3 i)(1-i) \\
& =5+3 i-(9+i-(5+3 i)(1-i))(1-i) \\
& =(5+3 i)(1-2 i)-(9+i)(1-i) .
\end{aligned}
$$

Thus $1+i=(5+3 i)(1-2 i)-(9+i)(1-i)$.
(2) (a) Show that $\{0,1, i, 1+i\}$ is a complete system of residue classes modulo 2 in $\mathbb{Z}[i]$.

Let $\alpha=a+b i$. Reduction modulo 2 shows that $\alpha \equiv 0,1, i, 1+i \bmod 2$. Moreover, none of these residue classes are equal since their differences $1, i, 1+i$ are not divisible by 2 .
(b) Show that $\alpha^{2} \equiv 0,1 \bmod 2$ for every $\alpha \in \mathbb{Z}[i]$.

The squares of the residue classes $0,1, i, 1+i \bmod 2$ are 0 or $1 \bmod 2$. Or directly: $(a+b i)^{2}=a^{2}-b^{2}+2 a b i \equiv a^{2}-b^{2} \equiv 0,1 \bmod 2$.
(c) Assume that $\pi \in \mathbb{Z}[i]$ has odd norm and can be written in the form $\pi=\alpha^{2}+\beta^{2}$ for $\alpha, \beta \in \mathbb{Z}[i]$. Show that $\pi \equiv 1 \bmod 2$.
We have $\pi=\alpha^{2}+\beta^{2} \equiv 0,1,2 \bmod 4 ;$ since $N \pi$ is odd, we must have $\pi \equiv 1 \bmod 2$.
(d) Show that any $\pi \in \mathbb{Z}[i]$ with $\pi \equiv 1 \bmod 2$ can be written in the form $\pi=\alpha^{2}+\beta^{2}$ for $\alpha, \beta \in \mathbb{Z}[i]$.
We have $\pi=\alpha^{2}+\beta^{2}=(\alpha+i \beta)(\alpha-i \beta)$. From $\alpha+i \beta=\pi$ and $\alpha-i \beta=1$ we get $\alpha=\frac{\pi+1}{2}$ and $\beta=\frac{\pi-1}{2 i}$, and since $\pi \equiv 1 \bmod 2$ these are Gaussian integers.
(e) Write $1+4 i$ as a sum of two squares in $\mathbb{Z}[i]$.
$1+4 i=(1+2 i)^{2}+2^{2}$.
(3) Compute the quadratic residue symbols $\left[\frac{1+i}{1+2 i}\right]$ and $\left[\frac{1+i}{1+4 i}\right]$ using Euler's criterium.

$$
\begin{aligned}
& {\left[\frac{1+i}{1+2 i}\right] \equiv(1+i)^{2}=2 i \equiv-1 \bmod 1+2 i, \text { hence }\left[\frac{1+i}{1+2 i}\right]=-1} \\
& {\left[\frac{1+i}{1+4 i}\right] \equiv(1+i)^{8}=(2 i)^{4} \equiv 2^{4} \equiv-1 \bmod 1+4 i, \text { hence }\left[\frac{1+i}{1+4 i}\right]=-1}
\end{aligned}
$$

This agrees with the next exercise: $\left[\frac{1+i}{1+2 i}\right]=\left(\frac{2}{3}\right)=-1,\left[\frac{1+i}{1+4 i}\right]=\left(\frac{2}{5}\right)=-1$.
(4) Let $\pi=a+b i \equiv 1 \bmod 2$ be a prime in $\mathbb{Z}[i]$, and assume that $N \pi=p$ is prime in \mathbb{Z}. Prove that $\left[\frac{1+i}{a+b i}\right]=\left(\frac{2}{a+b}\right)$.

Hints:
(a) Prove that $\left[\frac{m}{\pi}\right]=\left(\frac{m}{p}\right)$, where $p=N \pi=a^{2}+b^{2}$ and where m is an odd integer not divisible by p. We have $\left[\frac{m}{\pi}\right] \equiv m^{(N \pi-1) / 2}=m^{(p-1) / 2} \bmod$ π and $\left(\frac{m}{p}\right) \equiv m^{(p-1) / 2} \bmod p$. Since p is a multiple of π, we conclude that $\left[\frac{m}{\pi}\right] \equiv\left(\frac{m}{p}\right) \bmod \pi$. Thus π divides the difference, and this implies that the symbols are equal.
(b) Prove that $\left[\frac{a}{\pi}\right]=1 .\left[\frac{a}{\pi}\right]=\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)=1$ since $p \equiv 1 \bmod 4$ and $p=a^{2}+b^{2} \equiv b^{2} \bmod p$.
(c) Prove that $a i \equiv b \bmod \pi$. Multiply $a \equiv-b i \bmod \pi$ by i.
(d) Use b) and c) to prove that $\left[\frac{1+i}{a+b i}\right]=\left[\frac{a+b}{a+b i}\right] .\left[\frac{1+i}{a+b i}\right]=\left[\frac{a+a i}{a+b i}\right]=\left[\frac{a+b}{a+b i}\right]$.
(e) Complete the proof by evaluating the last symbol. $\left[\frac{a+b}{a+b i}\right]=\left(\frac{a+b}{p}\right)=$ $\left(\frac{p}{a+b}\right)$. Now $p=a^{2}+b^{2} \equiv a^{2}+b^{2}+\left(a^{2}-b^{2}\right)=2 a^{2} \bmod (a+b)$, hence $\left(\frac{p}{a+b}\right)=\left(\frac{2 a^{2}}{a+b}\right)=\left(\frac{2}{a+b}\right)$.
(5) Find all monic irreducible polynomials of the form $X^{3}+a X^{2}+1$ in $\mathbb{F}_{3}[X]$.

We have $f(0)=1, f(1)=a-1$ and $f(2)=a$ in \mathbb{F}_{3}. Now f is irreducible if and only if it does not have a root, that is, if and only if $a \neq 0$ and $a \neq 1$. Thus $X^{3}+2 X^{2}+1$ is the only irreducible polynomial of the form $X^{3}+a X^{2}+1$ in $\mathbb{F}_{3}[X]$.
(6) Find the prime factorization of $X^{4}+1$ in $\mathbb{F}_{5}[X]$.
$X^{4}+1=X^{4}-4=\left(X^{2}+2\right)\left(X^{2}-2\right)$, and both factors are irreducible since $a^{2} \pm 2 \not \equiv 0 \bmod 5$.
(7) Show that $P=X^{2}+1$ and $Q=X^{3}-X+1$ are irreducible in $\mathbb{F}_{3}[X]$, and compute the quadratic residue symbols $\left(\frac{P}{Q}\right)$ and $\left(\frac{Q}{P}\right)$.
$P(0)=1, P(\pm 1)=2$, hence P is irreducible. Similarly, $Q(0)=Q(1)=$ $Q(2)=1$.
$\left(\frac{Q}{P}\right) \equiv\left(X^{3}-X+1\right)^{4} \equiv(X+1)^{4}=\left(X^{2}+2 X+1\right)^{2} \equiv 4 X^{2} \equiv-1 \bmod P$, hence $\left(\frac{Q}{P}\right)=-1$.

Using quadratic reciprocity, we also find $\left(\frac{P}{Q}\right)=-1$. The direct calculation goes like this: $\left(\frac{P}{Q}\right) \equiv\left(X^{2}+1\right)^{13} \bmod Q$. Now $P^{3}=\left(X^{2}+1\right)^{3}=$ $X^{6}+1 \equiv(X-1)^{2}+1=X^{2}+X-1 \bmod Q$ since $X^{3} \equiv X-1 \bmod Q$. Next $P^{6} \equiv\left(X^{2}+X-1\right)^{2}=X^{4}+2 X^{3}-X^{2}-2 X+1 \equiv-X-1 \bmod Q$, hence $P^{12} \equiv X^{2}+2 X+1 \bmod Q$ and $P^{13} \equiv\left(X^{2}+2 X+1\right)\left(X^{2}+1\right) \equiv-1 \bmod Q$.
(8) Show that $X^{2}+X+1=0$ does not have a solution in \mathbb{Z}_{5}. How many different solutions does $X^{2}+X+1=0$ have in \mathbb{Z}_{7} ? Find the approximation modulo 7^{2} to one of them.

Assume that $x \in \mathbb{Z}_{5}$ satisfies $x^{2}+x+1=0$. Then there is an integer a with $x \equiv a \bmod 5$ and $a^{2}+a+1 \equiv 0 \bmod 5$. This congruence does not have a solution, hence there is no such 5 -adic number.

Playing the same game in \mathbb{Z}_{7} we see that there should be two 7 -adic numbers x with $x^{2}+x+1=0$, one with $x \equiv 2 \bmod 7$ and one with $x \equiv 4 \bmod 7$. Using induction it can be proved that both lift to solutions in \mathbb{Z}_{7}. For finding approximations modulo 7^{2}, put $z=2+7 y$; then $0 \equiv$ $z^{2}+z+1 \equiv 7+35 a \bmod 7^{2}$ gives $1+5 a \equiv 0 \bmod 7$ and $a=4$. Thus the desired approximation of z is $z \equiv 2+4 \cdot 7 \bmod 7^{2}$.

