
ELEMENTARY NUMBER THEORY

MIDTERM II

(1) Compute gcd(9 + i, 5 + 3i) using the Euclidean algorithm, as well as the
corresponding Bezout representation.

9 + i = (5 + 3i)(1− i) + (1 + 3i)

5 + 3i = (1 + 3i)(1− i) + 1 + i

1 + 3i = (1 + i)(2 + i)

Thus gcd(9 + i, 5 + 3i) = 1 + i. To find the Bezout representation, we
compute

1 + i = 5 + 3i− (1 + 3i)(1− i)

= 5 + 3i− (9 + i− (5 + 3i)(1− i))(1− i)

= (5 + 3i)(1− 2i)− (9 + i)(1− i).

Thus 1 + i = (5 + 3i)(1− 2i)− (9 + i)(1− i).

(2) (a) Show that {0, 1, i, 1+ i} is a complete system of residue classes modulo
2 in Z[i].

Let α = a+bi. Reduction modulo 2 shows that α ≡ 0, 1, i, 1+ i mod 2.
Moreover, none of these residue classes are equal since their differences
1, i, 1 + i are not divisible by 2.

(b) Show that α2 ≡ 0, 1 mod 2 for every α ∈ Z[i].

The squares of the residue classes 0, 1, i, 1 + i mod 2 are 0 or 1 mod 2.
Or directly: (a + bi)2 = a2 − b2 + 2abi ≡ a2 − b2 ≡ 0, 1 mod 2.

(c) Assume that π ∈ Z[i] has odd norm and can be written in the form
π = α2 + β2 for α, β ∈ Z[i]. Show that π ≡ 1 mod 2.

We have π = α2 + β2 ≡ 0, 1, 2 mod 4; since Nπ is odd, we must have
π ≡ 1 mod 2.

(d) Show that any π ∈ Z[i] with π ≡ 1 mod 2 can be written in the form
π = α2 + β2 for α, β ∈ Z[i].

We have π = α2 + β2 = (α + iβ)(α − iβ). From α + iβ = π and
α− iβ = 1 we get α = π+1

2 and β = π−1
2i , and since π ≡ 1 mod 2 these

are Gaussian integers.

(e) Write 1 + 4i as a sum of two squares in Z[i].

1 + 4i = (1 + 2i)2 + 22.
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(3) Compute the quadratic residue symbols [ 1+i
1+2i ] and [ 1+i

1+4i ] using Euler’s cri-
terium.

[ 1+i
1+2i ] ≡ (1 + i)2 = 2i ≡ −1 mod 1 + 2i, hence [ 1+i

1+2i ] = −1.
[ 1+i
1+4i ] ≡ (1 + i)8 = (2i)4 ≡ 24 ≡ −1 mod 1 + 4i, hence [ 1+i

1+4i ] = −1.
This agrees with the next exercise: [ 1+i

1+2i ] = ( 2
3 ) = −1, [ 1+i

1+4i ] = ( 2
5 ) = −1.

(4) Let π = a + bi ≡ 1 mod 2 be a prime in Z[i], and assume that Nπ = p is
prime in Z. Prove that [ 1+i

a+bi ] = ( 2
a+b ).

Hints:
(a) Prove that [m

π ] = (m
p ), where p = Nπ = a2 +b2 and where m is an odd

integer not divisible by p. We have [m
π ] ≡ m(Nπ−1)/2 = m(p−1)/2 mod

π and (m
p ) ≡ m(p−1)/2 mod p. Since p is a multiple of π, we conclude

that [m
π ] ≡ (m

p ) mod π. Thus π divides the difference, and this implies
that the symbols are equal.

(b) Prove that [ a
π ] = 1. [ a

π ] = (a
p ) = ( p

a ) = 1 since p ≡ 1 mod 4 and

p = a2 + b2 ≡ b2 mod p.

(c) Prove that ai ≡ b mod π. Multiply a ≡ −bi mod π by i.

(d) Use b) and c) to prove that [ 1+i
a+bi ] = [ a+b

a+bi ]. [ 1+i
a+bi ] = [a+ai

a+bi ] = [ a+b
a+bi ].

(e) Complete the proof by evaluating the last symbol. [ a+b
a+bi ] = (a+b

p ) =

( p
a+b ). Now p = a2 + b2 ≡ a2 + b2 +(a2− b2) = 2a2 mod (a+ b), hence

( p
a+b ) = ( 2a2

a+b ) = ( 2
a+b ).

(5) Find all monic irreducible polynomials of the form X3 + aX2 + 1 in F3[X].

We have f(0) = 1, f(1) = a−1 and f(2) = a in F3. Now f is irreducible
if and only if it does not have a root, that is, if and only if a 6= 0 and
a 6= 1. Thus X3 + 2X2 + 1 is the only irreducible polynomial of the form
X3 + aX2 + 1 in F3[X].

(6) Find the prime factorization of X4 + 1 in F5[X].

X4 + 1 = X4 − 4 = (X2 + 2)(X2 − 2), and both factors are irreducible
since a2 ± 2 6≡ 0 mod 5.
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(7) Show that P = X2 + 1 and Q = X3 −X + 1 are irreducible in F3[X], and
compute the quadratic residue symbols (P

Q ) and (Q
P ).

P (0) = 1, P (±1) = 2, hence P is irreducible. Similarly, Q(0) = Q(1) =
Q(2) = 1.

(Q
P ) ≡ (X3−X +1)4 ≡ (X +1)4 = (X2 +2X +1)2 ≡ 4X2 ≡ −1 mod P ,

hence (Q
P ) = −1.

Using quadratic reciprocity, we also find (P
Q ) = −1. The direct calcu-

lation goes like this: (P
Q ) ≡ (X2 + 1)13 mod Q. Now P 3 = (X2 + 1)3 =

X6 +1 ≡ (X−1)2 +1 = X2 +X−1 mod Q since X3 ≡ X−1 mod Q. Next
P 6 ≡ (X2 + X − 1)2 = X4 + 2X3 −X2 − 2X + 1 ≡ −X − 1 mod Q, hence
P 12 ≡ X2 +2X +1 mod Q and P 13 ≡ (X2 +2X +1)(X2 +1) ≡ −1 mod Q.

(8) Show that X2 + X + 1 = 0 does not have a solution in Z5. How many
different solutions does X2+X+1 = 0 have in Z7? Find the approximation
modulo 72 to one of them.

Assume that x ∈ Z5 satisfies x2 + x + 1 = 0. Then there is an integer
a with x ≡ a mod 5 and a2 + a + 1 ≡ 0 mod 5. This congruence does not
have a solution, hence there is no such 5-adic number.

Playing the same game in Z7 we see that there should be two 7-adic
numbers x with x2 + x + 1 = 0, one with x ≡ 2 mod 7 and one with
x ≡ 4 mod 7. Using induction it can be proved that both lift to solutions
in Z7. For finding approximations modulo 72, put z = 2 + 7y; then 0 ≡
z2 + z + 1 ≡ 7 + 35a mod 72 gives 1 + 5a ≡ 0 mod 7 and a = 4. Thus the
desired approximation of z is z ≡ 2 + 4 · 7 mod 72.


