ELEMENTARY NUMBER THEORY

MIDTERM I

- (1) Let R be a domain. Give the definitions of units, irreducibles, and primes.
 - $u \in R$ is a unit if and only if $u \mid 1$, that is, if and only if uv = 1 for some $v \in R$.
 - An element $p \in R$ is irreducible if it is a nonunit and if p = ab implies that a or b is a unit.
 - An element $p \in R$ is prime if it is a nonunit and if $p \mid ab$ implies $p \mid a$ or $p \mid b$.
- (2) State and prove Wilson's Theorem.

Wilson's theorem states that $(p-1)! \equiv -1 \mod p$ for every prime p. The proof can be found in the notes.

(3) Compute gcd(27, 21) and the corresponding Bezout representation (you will not get credit for guessing the answer).

27 = 21 + 6	$3 = 21 - (27 - 21) \cdot 3$
$21 = 6 \cdot 3 + 3$	$3 = 21 - 6 \cdot 3$
$6 = 3 \cdot 2 + 0$	

This shows that gcd(27, 21) = 3 and that $3 = 4 \cdot 21 - 3 \cdot 27$.

(4) Let $n \equiv 7 \mod 8$ be a natural number. Show that n cannot be written as a sum of three squares.

Every square is congruent to 0, 1, or 4 mod 8. It is now easily checked that the sum of three squares cannot be congruent to 7 mod 8.

(5) Show that $30 \mid (n^5 - n)$ for every $n \ge 1$.

We have $n^5 - n = n(n-1)(n+1)(n^2+1)$. Since n or n-1 is even we find $2 \mid (n^5 - n)$. Since on of n-1, n, n+1 is divisible by 3, we also have $3 \mid (n^5 - n)$. Finally we know $5 \mid n^5 - n$ by Fermat's Little Theorem. Since 2, 3 and 5 are coprime, this shows that $30 \mid n^5 - n$.

(6) Prove that every prime factor of $3x^2 + 1$ is $\equiv 1 \mod 3$. Then show that there exist infinitely many primes $p \equiv 1 \mod 3$.

There is a slight problem here: the correct statement is that every odd prime factor of $3x^2 + 1$ is $\equiv 1 \mod 3$. In fact, $p \mid 3x^2 + 1$ implies $3x^2 \equiv -1 \mod p$ and $(3x)^2 \equiv -3 \mod p$. Clearly -3 is a square modulo 2, and we

MIDTERM I

also see that $3 \nmid 3x^2 + 1$. For primes p > 3, the congruence $(3x)^2 \equiv -3 \mod p$ implies $\left(\frac{-3}{p}\right) = +1$, and this holds if and only if $p \equiv 1 \mod 3$.

In fact, $(\frac{-3}{p}) = (\frac{-1}{p})(\frac{3}{p}) = (-1)^{(p-1)/2}(-1)^{(3-1)(p-1)/4}(\frac{p}{3}) = (\frac{p}{3})$, which is +1 or -1 according as $p \equiv 1 \mod 3$ or $p \equiv 2 \mod 3$.

Now assume that p_1, \ldots, p_n are primes $\equiv 1 \mod 3$. We will construct a new one by looking at $N = 3(2p_1 \cdots p_n)^2 + 1$. We know that N is odd, hence its prime factors are all $\equiv 1 \mod 3$. Moreover, $p_j \nmid N$ since $p_j \mid N-1$, hence N is divisible by a prime $p \equiv 1 \mod 3$ not on the list.

If you look at $N = 3(p_1 \cdots p_n)^2 + 1$ instead, you only know that the odd prime factors are $\equiv 1 \mod 3$. Luckily it is easy to see that N is not a power of 2: since squares of of numbers are $\equiv 1 \mod 8$, we have $N \equiv 3 + 1 =$ 4 mod 8, hence N/4 is odd and > 1 since $p_1 \ge 7$.

(7) Assume that $p = a^2 + b^2$ is prime, and that a is odd. Show that $\left(\frac{a}{p}\right) = +1$.

Since $p \equiv 1 \mod 4$ we find $(\frac{a}{n}) = (\frac{p}{a}) = (\frac{a^2 + b^2}{a}) = (\frac{b^2}{a}) = +1.$

(8) Is 21 a quadratic residue modulo 101?

 $(\frac{21}{101}) = (\frac{101}{21}) = (\frac{-4}{21}) = (\frac{-1}{21}) = +1$ by the first supplementary law. Since 101 is prime, 21 is a quadratic residue modulo 101.

(9) Show that $\left(\frac{3}{p}\right) = 1$ for primes p > 3 if and only if $p \equiv \pm 1 \mod 12$.

We have

$$\binom{3}{p} = (-1)^{\frac{3-1}{2}\frac{p-1}{2}} \binom{p}{3} = (-1)^{\frac{p-1}{2}} \binom{p}{3}.$$

The right hand side can be evaluated easily if the residue class of $p \mod p$ 12 is known:

- $p \equiv 1 \mod 12$: $(\frac{3}{p}) = (+1)(+1) = +1;$ $p \equiv 5 \mod 12$: $(\frac{3}{p}) = (+1)(-1) = -1;$ $p \equiv 7 \mod 12$: $(\frac{3}{p}) = (-1)(+1) = -1;$ $p \equiv 11 \mod 12$: $(\frac{3}{p}) = (-1)(-1) = +1.$

This proves the claim.

- (10) Assume that $p \equiv 5 \mod 8$ is prime, and that a is a quadratic residue modulo p.
 - (a) Show that if $a^{(p-1)/4} \equiv 1 \mod p$, then $x = a^{(p+3)/8}$ solves the congruence $x^2 \equiv a \mod p$.

$$x^2 \equiv a^{(p+3)/4} \equiv a^{(p-1)/4} \cdot a \equiv a \mod p$$

(b) If $a^{(p-1)/4} \equiv -1 \mod p$, then $x \equiv 2a(4a)^{(p-5)/8} \mod p$ works. $x^2 \equiv 4a^2(4a)^{(p-5)/4} \equiv 4^{(p-1)/4}a \cdot a^{(p-1)/4} \equiv -2^{(p-1)/2}a \equiv a \mod p$ because $\left(\frac{2}{p}\right) = -1$ for primes $p \equiv 5 \mod 8$.