
ELEMENTARY NUMBER THEORY

MIDTERM I

(1) Let R be a domain. Give the definitions of units, irreducibles, and primes.

• u ∈ R is a unit if and only if u | 1, that is, if and only if uv = 1 for
some v ∈ R.

• An element p ∈ R is irreducible if it is a nonunit and if p = ab implies
that a or b is a unit.

• An element p ∈ R is prime if it is a nonunit and if p | ab implies p | a
or p | b.

(2) State and prove Wilson’s Theorem.

Wilson’s theorem states that (p−1)! ≡ −1 mod p for every prime p. The
proof can be found in the notes.

(3) Compute gcd(27, 21) and the corresponding Bezout representation (you will
not get credit for guessing the answer).

27 = 21 + 6 3 = 21− (27− 21) · 3
21 = 6 · 3 + 3 3 = 21− 6 · 3
6 = 3 · 2 + 0

This shows that gcd(27, 21) = 3 and that 3 = 4 · 21− 3 · 27.

(4) Let n ≡ 7 mod 8 be a natural number. Show that n cannot be written as
a sum of three squares.

Every square is congruent to 0, 1, or 4 mod 8. It is now easily checked
that the sum of three squares cannot be congruent to 7 mod 8.

(5) Show that 30 | (n5 − n) for every n ≥ 1.

We have n5 − n = n(n− 1)(n + 1)(n2 + 1). Since n or n− 1 is even we
find 2 | (n5 − n). Since on of n− 1, n, n + 1 is divisible by 3, we also have
3 | (n5 −n). Finally we know 5 | n5 −n by Fermat’s Little Theorem. Since
2, 3 and 5 are coprime, this shows that 30 | n5 − n.

(6) Prove that every prime factor of 3x2 + 1 is ≡ 1 mod 3. Then show that
there exist infinitely many primes p ≡ 1 mod 3.

There is a slight problem here: the correct statement is that every odd
prime factor of 3x2 + 1 is ≡ 1 mod 3. In fact, p | 3x2 + 1 implies 3x2 ≡
−1 mod p and (3x)2 ≡ −3 mod p. Clearly −3 is a square modulo 2, and we
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also see that 3 - 3x2+1. For primes p > 3, the congruence (3x)2 ≡ −3 mod p
implies (−3

p ) = +1, and this holds if and only if p ≡ 1 mod 3.
In fact, (−3

p ) = (−1
p )( 3

p ) = (−1)(p−1)/2(−1)(3−1)(p−1)/4(p
3 ) = (p

3 ), which
is +1 or −1 according as p ≡ 1 mod 3 or p ≡ 2 mod 3.

Now assume that p1, . . . , pn are primes ≡ 1 mod 3. We will construct a
new one by looking at N = 3(2p1 · · · pn)2 + 1. We know that N is odd,
hence its prime factors are all ≡ 1 mod 3. Moreover, pj - N since pj | N−1,
hence N is divisible by a prime p ≡ 1 mod 3 not on the list.

If you look at N = 3(p1 · · · pn)2 +1 instead, you only know that the odd
prime factors are ≡ 1 mod 3. Luckily it is easy to see that N is not a power
of 2: since squares of of numbers are ≡ 1 mod 8, we have N ≡ 3 + 1 =
4 mod 8, hence N/4 is odd and > 1 since p1 ≥ 7.

(7) Assume that p = a2 + b2 is prime, and that a is odd. Show that (a
p ) = +1.

Since p ≡ 1 mod 4 we find (a
p ) = ( p

a ) = (a2+b2

a ) = ( b2

a ) = +1.

(8) Is 21 a quadratic residue modulo 101?

( 21
101 ) = ( 101

21 ) = (−4
21 ) = (−1

21 ) = +1 by the first supplementary law.
Since 101 is prime, 21 is a quadratic residue modulo 101.

(9) Show that ( 3
p ) = 1 for primes p > 3 if and only if p ≡ ±1 mod 12.

We have (3
p

)
= (−1)

3−1
2

p−1
2

(p

3

)
= (−1)

p−1
2

(p

3

)
.

The right hand side can be evaluated easily if the residue class of p mod
12 is known:
• p ≡ 1 mod 12: ( 3

p ) = (+1)(+1) = +1;
• p ≡ 5 mod 12: ( 3

p ) = (+1)(−1) = −1;
• p ≡ 7 mod 12: ( 3

p ) = (−1)(+1) = −1;
• p ≡ 11 mod 12: ( 3

p ) = (−1)(−1) = +1.
This proves the claim.

(10) Assume that p ≡ 5 mod 8 is prime, and that a is a quadratic residue modulo
p.
(a) Show that if a(p−1)/4 ≡ 1 mod p, then x = a(p+3)/8 solves the congru-

ence x2 ≡ a mod p.

x2 ≡ a(p+3)/4 ≡ a(p−1)/4 · a ≡ a mod p.

(b) If a(p−1)/4 ≡ −1 mod p, then x ≡ 2a(4a)(p−5)/8 mod p works.

x2 ≡ 4a2(4a)(p−5)/4 ≡ 4(p−1)/4a · a(p−1)/4 ≡ −2(p−1)/2a ≡ a mod p
because ( 2

p ) = −1 for primes p ≡ 5 mod 8.


