ELEMENTARY NUMBER THEORY

MIDTERM I

(1) Let R be a domain. Give the definitions of units, irreducibles, and primes.

- $u \in R$ is a unit if and only if $u \mid 1$, that is, if and only if $u v=1$ for some $v \in R$.
- An element $p \in R$ is irreducible if it is a nonunit and if $p=a b$ implies that a or b is a unit.
- An element $p \in R$ is prime if it is a nonunit and if $p \mid a b$ implies $p \mid a$ or $p \mid b$.
(2) State and prove Wilson's Theorem.

Wilson's theorem states that $(p-1)!\equiv-1 \bmod p$ for every prime p. The proof can be found in the notes.
(3) Compute $\operatorname{gcd}(27,21)$ and the corresponding Bezout representation (you will not get credit for guessing the answer).

$$
\begin{array}{rlrl}
27 & =21+6 & 3 & =21-(27-21) \cdot 3 \\
21 & =6 \cdot 3+3 & & 3=21-6 \cdot 3 \\
6 & =3 \cdot 2+0 & &
\end{array}
$$

This shows that $\operatorname{gcd}(27,21)=3$ and that $3=4 \cdot 21-3 \cdot 27$.
(4) Let $n \equiv 7 \bmod 8$ be a natural number. Show that n cannot be written as a sum of three squares.

Every square is congruent to 0,1 , or $4 \bmod 8$. It is now easily checked that the sum of three squares cannot be congruent to $7 \bmod 8$.
(5) Show that $30 \mid\left(n^{5}-n\right)$ for every $n \geq 1$.

We have $n^{5}-n=n(n-1)(n+1)\left(n^{2}+1\right)$. Since n or $n-1$ is even we find $2 \mid\left(n^{5}-n\right)$. Since on of $n-1, n, n+1$ is divisible by 3 , we also have $3 \mid\left(n^{5}-n\right)$. Finally we know $5 \mid n^{5}-n$ by Fermat's Little Theorem. Since 2,3 and 5 are coprime, this shows that $30 \mid n^{5}-n$.
(6) Prove that every prime factor of $3 x^{2}+1$ is $\equiv 1 \bmod 3$. Then show that there exist infinitely many primes $p \equiv 1 \bmod 3$.

There is a slight problem here: the correct statement is that every odd prime factor of $3 x^{2}+1$ is $\equiv 1 \bmod 3$. In fact, $p \mid 3 x^{2}+1$ implies $3 x^{2} \equiv$ $-1 \bmod p$ and $(3 x)^{2} \equiv-3 \bmod p$. Clearly -3 is a square modulo 2 , and we
also see that $3 \nmid 3 x^{2}+1$. For primes $p>3$, the congruence $(3 x)^{2} \equiv-3 \bmod p$ implies $\left(\frac{-3}{p}\right)=+1$, and this holds if and only if $p \equiv 1 \bmod 3$.

In fact, $\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)^{(p-1) / 2}(-1)^{(3-1)(p-1) / 4}\left(\frac{p}{3}\right)=\left(\frac{p}{3}\right)$, which is +1 or -1 according as $p \equiv 1 \bmod 3$ or $p \equiv 2 \bmod 3$.

Now assume that p_{1}, \ldots, p_{n} are primes $\equiv 1 \bmod 3$. We will construct a new one by looking at $N=3\left(2 p_{1} \cdots p_{n}\right)^{2}+1$. We know that N is odd, hence its prime factors are all $\equiv 1 \bmod 3$. Moreover, $p_{j} \nmid N$ since $p_{j} \mid N-1$, hence N is divisible by a prime $p \equiv 1 \bmod 3$ not on the list.

If you look at $N=3\left(p_{1} \cdots p_{n}\right)^{2}+1$ instead, you only know that the odd prime factors are $\equiv 1 \bmod 3$. Luckily it is easy to see that N is not a power of 2 : since squares of of numbers are $\equiv 1 \bmod 8$, we have $N \equiv 3+1=$ $4 \bmod 8$, hence $N / 4$ is odd and >1 since $p_{1} \geq 7$.
(7) Assume that $p=a^{2}+b^{2}$ is prime, and that a is odd. Show that $\left(\frac{a}{p}\right)=+1$.

Since $p \equiv 1 \bmod 4$ we find $\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)=\left(\frac{a^{2}+b^{2}}{a}\right)=\left(\frac{b^{2}}{a}\right)=+1$.
(8) Is 21 a quadratic residue modulo 101 ?
$\left(\frac{21}{101}\right)=\left(\frac{101}{21}\right)=\left(\frac{-4}{21}\right)=\left(\frac{-1}{21}\right)=+1$ by the first supplementary law. Since 101 is prime, 21 is a quadratic residue modulo 101.
(9) Show that $\left(\frac{3}{p}\right)=1$ for primes $p>3$ if and only if $p \equiv \pm 1 \bmod 12$.

We have

$$
\left(\frac{3}{p}\right)=(-1)^{\frac{3-1}{2} \frac{p-1}{2}}\left(\frac{p}{3}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right) .
$$

The right hand side can be evaluated easily if the residue class of $p \bmod$ 12 is known:

- $p \equiv 1 \bmod 12:\left(\frac{3}{p}\right)=(+1)(+1)=+1$;
- $p \equiv 5 \bmod 12:\left(\frac{3}{p}\right)=(+1)(-1)=-1$;
- $p \equiv 7 \bmod 12:\left(\frac{3}{p}\right)=(-1)(+1)=-1$;
- $p \equiv 11 \bmod 12:\left(\frac{3}{p}\right)=(-1)(-1)=+1$.

This proves the claim.
(10) Assume that $p \equiv 5 \bmod 8$ is prime, and that a is a quadratic residue modulo p.
(a) Show that if $a^{(p-1) / 4} \equiv 1 \bmod p$, then $x=a^{(p+3) / 8}$ solves the congruence $x^{2} \equiv a \bmod p$.

$$
x^{2} \equiv a^{(p+3) / 4} \equiv a^{(p-1) / 4} \cdot a \equiv a \bmod p
$$

(b) If $a^{(p-1) / 4} \equiv-1 \bmod p$, then $x \equiv 2 a(4 a)^{(p-5) / 8} \bmod p$ works.
$x^{2} \equiv 4 a^{2}(4 a)^{(p-5) / 4} \equiv 4^{(p-1) / 4} a \cdot a^{(p-1) / 4} \equiv-2^{(p-1) / 2} a \equiv a \bmod p$ because $\left(\frac{2}{p}\right)=-1$ for primes $p \equiv 5 \bmod 8$.

