Chapter 8

The Prime Number
 Theorem

The Prime Number Theorem makes predictions about the growth of the prime counting function

$$
\pi(x)=\{p \leq x: p \text { prime }\}
$$

The following diagrams from Zagier's article "The first 50 million primes" (Mathematical Intelligencer (1977), 1-19) show how $\pi(x)$ behaves for $x \leq 100$:

Figure 8.1: $\pi(x)$ for $x \leq 100$ and $x \leq 1000$
It seems clear that $\pi(x)$ behaves like a smooth function for large values of x. Is there an analytic function $f(x)$ such that $\pi(x) \sim f(x)$, i.e., $\lim \frac{\pi(x)}{f(x)}=1$? Legendre and Gauss conjectures that $f(x)=\frac{x}{\log x}$ would do it, and this was proved a hundred years later independently by Hadamard and de la ValleePoussin using complex analysis (essentially, the truth of the prime number theorem rests upon the fact that the Riemann zeta function defined by $\zeta(s)=$ $\sum_{n \geq 1} n^{-s}$ in the half plane Re $s>1$ can be extended meromorphically to the whole complex plane and does not have any zeros on the line $\operatorname{Re} s=1$).

A first step in the direction of a proof of the prime number theorem was done by Chebyshev, who proved with his bare hands that there exist constants $c_{1}, c_{2}>0$ with

$$
c_{1} \frac{x}{\log x}<\pi(x)<c_{2} \frac{x}{\log x} .
$$

The closer the constants c_{j} are to 1 , the more technical the proof becomes. Here we will show that $c_{1}=\frac{\log 2}{2}$ and $c_{2}=6 \log 2$ do work.

Chebyshev's proof uses elementary properties of the binomial coefficients $\binom{2 m}{m}=\frac{(2 m)!}{m!m!}$. Here are some of them:

1. $\frac{2^{2 n}}{2 n} \leq\binom{ 2 n}{n} \leq 2^{2 n}$: this comes from $(1+1)^{2 n}=\sum_{m=0}^{2 n}\binom{2 m}{m}$.
2. $\binom{2 n}{n}$ is not divisible by any primes $p>2 n$.
3. $\binom{2 n}{n}$ is divisible by all primes $n<p \leq 2 n$.

8.1 The Upper Bound

Properties (2) and (1) of the middle binomial coefficient imply that

$$
n^{\pi(2 n)-\pi(n)} \leq \prod_{n<p \leq 2 n} p \leq\binom{ 2 n}{n} \leq 2^{2 n}
$$

Taking the \log gives $\pi(2 n)-\pi(n) \leq 2 \log 2 \frac{n}{\log n}$. Using induction we now easily see that

$$
\pi\left(2^{k}\right) \leq 3 \cdot \frac{2^{k}}{k}
$$

In fact, this is checked directly for $k \leq 5$; for $k>5$ we find

$$
\pi\left(2^{k+1}\right) \leq \pi\left(2^{k}\right)+\frac{2^{k+1}}{k} \leq \frac{3 \cdot 2^{k}}{k}+\frac{2 \cdot 2^{k}}{k}=\frac{5 \cdot 2^{k}}{k} \leq \frac{3 \cdot 2^{k+1}}{k+1}
$$

Now we exploit the fact that $f(x)=\frac{x}{\log x}$ is monotonely increasing for $x \geq e$. Thus if $4 \leq 2^{k}<x \leq 2^{k+1}$, then

$$
\pi(x) \leq \pi\left(2^{k+1}\right) \leq 6 \frac{2^{k}}{k+1} \leq 6 \log 2 \frac{2^{k}}{\log 2^{k}} \leq 6 \log 2 \frac{x}{\log x}
$$

Since $\pi(x) \leq 6 \log 2 \frac{x}{\log x}$ for $x \leq 4$, the proof is now complete.

8.2 The Lower Bound

Here we will have to work slightly harder. First we prove
Lemma 8.1. Let $v_{p}(n)$ denote the exponent of the maximal power of p dividing n. Then

$$
v_{p}(n!)=\sum_{m \geq 1}\left\lfloor\frac{n}{p^{m}}\right\rfloor
$$

Proof. Among the numbers $1,2, \ldots, n$, exactly $\left\lfloor\frac{n}{p}\right\rfloor$ are multiples of p and thus contribute 1 to the exponent; moreover, exactly $\left\lfloor\frac{n}{p^{2}}\right\rfloor$ are multiples of p^{2} and contribute another 1 to the exponent...

Now put $N=\binom{2 n}{n}$. By the lemma above we have

$$
v_{p}(N)=\sum_{m \geq 1}\left(\left\lfloor\frac{2 n}{p^{m}}\right\rfloor-2\left\lfloor\frac{n}{p^{m}}\right\rfloor\right)
$$

Now we use
Lemma 8.2. For all $x \in \mathbb{R}$ we have $\lfloor 2 x\rfloor-2\lfloor x\rfloor \in\{0,1\}$.
Proof. Write $x=\lfloor x\rfloor+\{x\}$. If the fractional part $\{x\}<\frac{1}{2}$, then $2 x=2\lfloor x\rfloor+$ $\{2 x\}$, hence $\lfloor 2 x\rfloor-2\lfloor x\rfloor=0$. If $\{x\} \geq \frac{1}{2}$, then we get $\lfloor 2 x\rfloor-2\lfloor x\rfloor=1$.

It is also clear that if $m>\frac{\log 2 n}{\log p}$, then $\left\lfloor\frac{2 n}{p^{m}}\right\rfloor-2\left\lfloor\frac{n}{p^{m}}\right\rfloor=0$. Thus we find $v_{p}(N) \leq\left\lfloor\frac{\log 2 n}{\log p}\right\rfloor$, and now

$$
\begin{aligned}
2 n \log 2-\log 2 n & \leq \log \binom{2 n}{n} & & \text { because } \frac{2^{2 n}}{2 n} \leq\binom{ 2 n}{n} \\
& \leq \sum_{p \leq 2 n}\left\lfloor\frac{\log 2 n}{\log p}\right\rfloor \log p & & \text { because } N=\prod p^{v_{p}(N)} \\
& \leq \sum_{p \leq 2 n} \log 2 n & & \text { because }\lceil x\rceil \leq x \\
& =\pi(2 n) \log 2 n & &
\end{aligned}
$$

This yields the lower bound

$$
\pi(2 n) \geq \log 2 \frac{2 n}{\log 2 n}-1
$$

We claim that this implies

$$
\pi(x) \geq \frac{\log 2}{2} \frac{x}{\log x}
$$

for all $x \geq 2$. This inequality can be checked directly for $x \leq 16$, hence it is sufficient to prove it for $x>16$. Pick an integer n with $16 \leq 2 n<x \leq 2 n+2$. Then

$$
\frac{2 n}{\log 2 n}-\frac{n+1}{\log 2 n}=\frac{n-1}{\log 2 n} \geq \frac{7}{4 \log 2} \geq \frac{1}{\log 2}
$$

hence

$$
\pi(x) \geq \pi(2 n) \geq \log 2 \frac{2 n}{\log 2 n}-1 \geq \frac{(n+1) \log 2}{\log (2 n+2)} \geq \frac{\log 2}{2} \frac{x}{\log x}
$$

8.3 Bertrand's Postulate

By improving the constants c_{1} and c_{2} above it is clear that Bertrand's conjecture that $\pi(2 n)-\pi(n)>0$ for all integers n must follow: there is at least one prime between n and $2 n$ for all $n \in \mathbb{N}$. In fact a simple calculation shows that Bertrand's conjecture follows as soon as we can find bounds that satisfy $2 c_{1}>c_{2}$.

Here is a direct proof. Put $\Theta(x)=\prod_{p \leq x} p$.
Proposition 8.3. We have $\Theta(x) \leq 4^{x}$.
Proof. It is clearly sufficient to prove this for integers $x \geq 4$. Observe that $\binom{2 m+1}{m}=\binom{2 m+1}{m+1}<2^{2 m}=4^{m}$. This gives

$$
\prod_{m+2 \leq p \leq 2 m+1} p \left\lvert\,\binom{ 2 m+1}{m}<4^{m}\right.
$$

Now we prove the claim by induction; assume it is true for all $n<k$. If k is even, then $\Theta(k)=\Theta(k-1)<4^{k-1}<4^{k}$ by induction assumption and the fact that k is not prime. Assume therefore that $k=2 m+1$. Then

$$
\Theta(k)=\Theta(m+1) \prod_{m+2 \leq p \leq 2 m+1} p<4^{m+1} \cdot 4^{m}=4^{k}
$$

We have already seen that $N=\binom{2 n}{n}$ is divisible by all primes p with $n<$ $p \leq 2 n$ (if there are any). Now we claim that the primes p with $\frac{2}{3} n<p \leq n$ do not divide N. In fact we have $2 n<3 p \leq p^{2}$, hence $2 \leq \frac{2 n}{p}<3$, hence $\left\lceil\frac{2 n}{p}\right\rceil=2$ and $\left\lceil\frac{n}{p}\right\rceil=1$, and this implies that $v_{p}(N)=2-2=0$.

Now we prove Bertrand's postulate by contradiction. Assume there is an integer n such that the interval $(n, 2 n]$ does not contain any prime. By the discussion above this implies that $N=\binom{2 n}{n}$ is not divisible by any prime $p>\frac{2}{3} n$. Now consider primes $p \mid N$ with $v_{p}(N)>1$. They satisfy $p^{2} \leq p^{v_{p}} \leq 2 n$, hence we must have $p \leq \sqrt{2 n}$ for such primes. The number of such primes is clearly bounded by $\sqrt{2 n}$. Now we find

$$
\frac{2^{2 n}}{2 n} \leq\binom{ 2 n}{n} \leq \prod_{v_{p}>1} p^{v_{p}} \cdot \prod_{v_{p}=1} p \leq(2 n)^{\sqrt{2 n}} \cdot \Theta\left(\frac{2 n}{3}\right) \leq(2 n)^{\sqrt{2 n}} 2^{4 n / 3}
$$

Taking the log we get

$$
2 n \log 2 \leq 3(1+\sqrt{2 n}) \log 2 n
$$

Since $\frac{x}{\log x}$ is monotonically increasing for $x>3$, this inequality must be false for all sufficiently large values of n. In fact, it is false for $n \geq 512$. For $n<512$, Bertrand's postulate is proved by looking at the sequence of primes 7, 13, 23, 43, 83, 163, 317, 631.

