
Chapter 5

Diophantine Equations

In this chapter, we will give a couple of applications of the number theory we
have developed so far:

• the solution of the diophantine equation x2 + y2 = z2 (Pythagorean
triples),

• Fermat’s Last Theorem for the exponent 4;

• and the theorem of Girard1- Fermat2 that primes of the form 4n + 1 are
sums of two squares.

5.1 Fermat’s Last Theorem for Exponent 4

The solution of x2 + y2 = z2 will help us prove that the diophantine equation

X4 + Y 4 = Z4 (5.1)

has only trivial solutions, namely those with X = 0 or Y = 0. As a matter of
fact, it is a lot easier to prove more, namely that

X4 + Y 4 = Z2 (5.2)

has only trivial solutions (this is more: if X4 +Y 4 cannot be a square, it cannot
be a fourth power). The proof is quite involved and uses a technique that Fermat
called infinite descent.

In a nutshell, the idea behind infinite descent is the following: if we want to
prove that a certain diophantine equation is impossible in N, it is sufficient to
show that for every solution in natural numbers there is another solution that is
“smaller”, which eventually leads to a contradiction because there is no natural
number smaller than 1.

Here are some simple examples:
1Albert Girard (?), 1595 (St Mihiel, France)– 1632 (Leiden, Netherlands)
2Pièrre de Fermat, ca. 1607 (Beaumont-de-Lomagne, near Toulouse, France)–1665 (Cas-

tres, France)
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Proposition 5.1. The diophantine equation x2 + y2 = 3z2 does not have solu-
tions in natural numbers.

Proof. Assume there are natural numbers x, y, z > 0 such that x2 + y2 = 3z2.
Then x2 + y2 ≡ 0 (mod 3). The following table gives the congruence class of
x2 + y2 modulo 3 in terms of x and y:

0 1 2
0 0 1 1
1 1 2 2
2 1 2 2

Note that, since 22 ≡ 12 mod 3, the last row and column were actually su-
perfluous. What this table is showing is that if x2 + y2 ≡ 0 mod 3, then
x ≡ y ≡ 0 mod 3. A quicker way of seeing this is provided by the following
argument: if 3 - y, then x2 + y2 ≡ 0 mod 3 implies (x/y)2 ≡ −1 mod 3, contra-
dicting the fact that −1 is not a square modulo 3.

Thus x = 3x1 and y = 3y1 for natural numbers x1, y1. Now 3z2 = x2 +y2 =
9x2

1+9y2
1 implies z2 = 3(x2

1+y2
1); since the right hand side is divisible by 3, so is

the left hand side: z = 3z1 for some integer z1 > 0. But then 9z2
1 = 3(x2

1 + y2
1),

that is, x2
1 + y2

1 = 3z2
1 .

We have shown: given any solution (x, y, z) in natural numbers of the equa-
tion x2 + y2 = 3z2, there is another solution (x1, y1, z1) in natural numbers
with z1 = z/3. Repeating this argument gives yet another solution (x2, y2, z2)
in natural numbers with z2 = z1/3 = z/9. Eventually, this will produce a
contradiction because natural numbers cannot decrease indefinitely.

Proposition 5.2. The equation x3 +3y3 +9z3 = 0 does not have any solutions
in positive integers.

Proof. Assume that (x, y, z) is a solution in positive integers. Clearly x is divisi-
ble by 3, so x = 3x1 for some positive integer x1. But then 27x3

1 +3y3 +9z3 = 0,
hence 9x3

1 +y3 +3z3 = 0. Now y = 3y1, and we find 3x3
1 +9y3

1 +z3 = 0. Finally,
z = 3z1 for some positive integer z1, and x3

1 + 3y3
1 + 9z3

1 = 0.
Thus if (x, y, z) is a solution of the equation x3 + 3y3 + 9z3 = 0 in positive

integers, then so is (x
3 , y

3 , z
3 ). Repeating this argument we find that for every

positive solution there is a smaller solution in positive integers: but this is
nonsense, thus there is no solution in positive integers.

Proposition 5.3. The number
√

2 is irrational.

Proof. Assume not. Then
√

2 = m
n for positive integers m,n, and squaring

yields 2n2 = m2. Thus m = 2p is even, and we find n2 = 2p2. This shows
that n = 2q for some positive integer q, hence 2q2 = p2. Thus if

√
2 = m

n , then√
2 = p

q with integers p = m
2 and q = n

2 . Repeating this sufficiently often leads
to a contradiction since no positive integer is divisible by 2 infinitely often.

Fermat used this idea to give a proof of
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Theorem 5.4. The Fermat equation (5.2) for the exponent 4 does not have any
integral solution with XY Z 6= 0.

Proof. Assume that X, Y, Z ∈ N \ {0} satisfy (5.2); we may (and will) assume
that these integers are pairwise coprime (otherwise we can cancel common di-
visors). Now we vaguely follow our solution of the Pythagorean equation: Z
must be odd (if Z were even, then X and Y would have to be odd, and we get
a contradiction as in the proof of Theorem 5.13).

Thus we may assume that X is odd and Y is even. Since (X2, Y 2, Z) is a
Pythagorean Triple, there exist integers m,n such that X2 = m2−n2, Y 2 = 2mn
and Z = m2 + n2. Clearly gcd(m,n) divides both X and Y , hence m and n are
coprime; moreover, since X is odd, we have 1 ≡ X2 = m2 − n2 mod 4, which
implies that m is odd and n = 2k is even. Thus (Y/2)2 = mk with m and k
coprime, hence m = a2 and k = b2, giving X2 = a4 − 4b4.

Now we repeat the trick: from X2 + 4b4 = a4 we see that (X, 2b2, a2) is
a Pythagorean triple; thus X = m2

1 − n2
1, 2b2 = 2m1n1 and a2 = m2

1 + n2
1,

where m1 and n1 are (necessarily coprime) positive integers. From m1n1 = b2

we deduce that m1 = r2 and n1 = s2, hence a2 = r4 + s4, and we have found a
new solution (a, r, s) to our equation Z2 = X4 + Y 4.

Since Z = m2 + n2 = a4 + 4b4, we find that 0 < a < Z; this means that for
every solution (X, Y, Z) in natural numbers there exists another solution with
a smaller Z. This is impossible, so there can’t be a nontrivial solution to the
Fermat equation in the first place.

5.2 Fermat’s Two-Squares Theorem

A well known theorem first stated by Girard, and probably first proved by
Fermat (the first known proof is due to Euler) concerns primes that are sums of
two squares, such as 5 = 12 +22 or 29 = 22 +52. The following characterization
of such primes is a simple consequence of the notion of congruences; the converse
is also true, but much harder to prove.

Proposition 5.5. If a prime p is the sum of two integral squares, then p = 2
or p ≡ 1 mod 4.

Proof. There are 4 residue classes modulo 4; their squares are [0] = [0]2 and
[1] = [1]2, and in fact the squares [2]2 = [0] and [3]2 = [1] of the remaining
classes don’t produce new ones.

Now assume that p = a2 + b2. Since a2, b2 ≡ 0, 1 mod 4, we find that a2 + b2

must be congruent modulo 4 to one of 0 = 0+0, 1 = 1+0 = 0+1, or 2 = 1+1,
that is, p ≡ 0, 1, 2 mod 4. Since no prime is congruent to 0 mod 4, and since 2 is
the only prime ≡ 2 mod 4, we even have p = 2 or p ≡ 1 mod 4 as claimed.

For the converse, we need to know when [−1] is a square in Z/pZ for primes
p. Experiments show that [−1] is not a square modulo 3, 7, or 11, and that
[2]2 = [−1] for p = 5, and [5]2 = [−1] for p = 13. The general result is
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Proposition 5.6. Let p ≡ 1 mod 4 be prime; then the congruence a2 ≡ −1 mod
p has a solution.

For the proof, we need some auxiliary results.

Proposition 5.7 (Wilson’s Theorem). For p > 1, we have (p−1)! ≡ −1 mod p
if and only if p is a prime.

Proof. Let p be a prime; the claim is trivial if p = 2, so assume that p is odd.
The idea is to look at pairs of the elements of (Z/pZ)×. In fact, for every
a ∈ (Z/pZ)× there is an element a−1 ∈ (Z/pZ)× such that a · a−1 ≡ 1 mod p.
In general, [a] and [a−1] are different: [a] = [a−1] implies [a2] = [1], so this can
only happen (and does in fact happen) if [a] = [1] or [a] = [−1] = [p− 1] (here
we use that Z/pZ is a field; in fields, polynomials of degree 2 such as x2 − 1
have at most 2 roots).

Thus (Z/pZ)×\{[−1], [+1]} is the union of pairs {[a], [a−1]} with [a] 6= [a−1],
hence the product over all elements of (Z/pZ)× \ {[−1], [+1]} must be [1]. We
can get [(p − 1)!] by multiplying this product with the two missing classes [1]
and [−1], and this gives the claimed result [(p− 1)!] = [−1].

We still have to prove the converse: assume that (n − 1)! ≡ −1 mod n; if p
is a prime divisor of n, this congruence implies (n− 1)! ≡ −1 mod p. But p < n
also implies that p occurs as a factor of (n− 1)! on the left hand side, hence we
would have 0 ≡ (n− 1)! mod p. But then 0 ≡ −1 mod p, a contradiction.

Note that Wilson’s theorem provides us with a primality test; unfortunately
the only known way to compute (n− 1)! is via n− 2 multiplications, so it takes
even longer than trial division!

Proposition 5.8. Let p be an odd prime and put a = (p−1
2 )!; then we have

a2 ≡ (−1)(p+1)/2 mod p. In particular, a ≡ ±1 mod p if p ≡ 3 mod 4, and
a2 ≡ −1 mod p if p ≡ 1 mod 4.

Proof. We start with Wilson’s theorem (p− 1)! ≡ −1 mod p; if, in the product
(p−1)!, we replace the elements p+1

2 , p+3
2 , . . . , p−1 by their negatives −p+1

2 ≡
p−1
2 , −p+3

2 ≡ p−3
2 , . . . , −(p − 1) ≡ 1 mod p, then we have introduced exactly

p−1
2 factors −1; thus (p − 1)! ≡ (−1)(p−1)/2a2 mod p with a = (p−1

2 )!). This
proved the claim.

Now we can prove Proposition 5.6: if p ≡ 1 mod 4, then we have just con-
structed a solution of the congruence a2 ≡ −1 mod p. The converse is also true:
if p is an odd prime such that a2 ≡ −1 mod p has a solution, then p must be
≡ 1 mod 4. This will follow from Fermat’s Little Theorem.

The solvability of x2 ≡ −1 mod p is the first of two steps in our proof
of the Theorem of Girard-Fermat; the second one is a result due to Birkhoff,
rediscovered by Aubry, and named after Thue:

Proposition 5.9. Given an integer a not divisible by p, there exist x, y ∈ Z
with 0 < |x|, |y| < √

p such that ay ≡ x mod p.
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Proof. Let f be the smallest integer greater than
√

p, and consider the residue
classes {[u + av] : 0 ≤ u, v < f} modulo p. There are f2 > p such expressions,
but only p different residue classes, hence there must exist u, u′, v, v′ such that
u + av ≡ u′ + av′ mod p. Put x = u − u′ and y = v′ − v; then x ≡ ay mod p,
and moreover −f < x, y < f .

Now we can prove

Theorem 5.10 (Girard-Fermat-Euler). Every prime p ≡ 1 mod 4 is a sum of
two integral squares.

Proof. Since p ≡ 1 mod 4, there is an a ∈ Z such that a2 ≡ −1 mod 4. By
Thue’s result, there are integers x and y such that ay ≡ x mod p and 0 <
x, y <

√
p. Squaring gives −y2 ≡ x2 mod p, that is, x2 + y2 ≡ 0 mod p. Since

0 < x2, y2 < p, we find 0 < x2 +y2 < 2p; since x2 +y2 is divisible by p, we must
have x2 + y2 = p.

5.3 Quadratic Equations

Next we will apply the Unique Factorization Theorem to the solution of the
diophantine equation

x2 + y2 = z2

in integers x, y, z ∈ Z. Such triples of solutions are called Pythagorean3 triples.
The most famous of these triples is of course (3, 4, 5). It is quite easy to give
formulas for producing such triples: for example, take x = 2mn, y = m2 − n2

and z = m2 +n2 (special cases were known to the Babylonians, the general case
occurs in Euclid). It is less straightforward to verify that there are no other
solutions (this was first done by the Arabs in the 10th century).

Assume that (x, y, z) is a Pythagorean triple. If d divides two of these, it
divides the third, and then (x/d, y/d, z/d) is another Pythagorean triple. We
may therefore assume that x, y and z are pairwise coprime; such triples are
called primitive. In particular, exactly one of them is even.
Claim 1. The even integer must be one of x or y. In fact, if z is even, then
x and y are odd. Writing x = 2X + 1, y = 2Y + 1 and z = 2Z, we find
4X2 + 4X + 4Y 2 + 4Y + 2 = 4Z2: but the left hand side is not divisible by 4:
contradiction.

Exchanging x and y if necessary we may assume that x is even. Now we
transfer the additive problem x2 +y2 = z2 into a multiplicative one (if we are to
use unique factorization, we need products, not sums) by writing x2 = z2−y2 =
(z − y)(z + y).
Claim 2. gcd(z − y, z + y) = 2. In fact, put d = gcd(z − y, z + y). Then
d divides z − y and z + y, hence their sum 2z and their difference 2y. Now
gcd(2y, 2z) = 2 gcd(y, z) = 2, so d | 2; on the other hand, 2 | d since z − y and
z + y are even since z and y are odd. Thus d = 2 as claimed.

This is the point where Unique Factorization comes in:
3Pythagoras of Samos (ca. 569 – 475 BC.).
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Proposition 5.11. Let a, b ∈ N be coprime integers such that ab is a square.
Then a and b are squares.

Proof. Write down the prime factorizations of a and b as

a = pa1
1 · · · par

r , b = qb1
1 · · · qbs

s .

Now a and b are coprime, so the set of pi and the set of qj are disjoint, and we
conclude that the prime factorization of ab is given by

ab = pa1
1 · · · par

r qb1
1 · · · qbs

s .

Since ab is a square, all the exponents in the prime factorization of ab must
be even. This implies that the ai and the bj are even, therefore a and b are
squares.

Corollary 5.12. Let a, b ∈ N be integers with gcd(a, b) = d such that ab is a
square. Then a/d and b/d are squares.

Proof. Apply the proposition to the pair a/d and b/d.

Applying the corollary to the case at hand (and observing that z − y ∈ N,
since z + y > 0 and (z − y)(z + y) = x2 > 0) we find that there exist m,n ∈ N
such that z−y = 2n2 and z+y = 2m2. Adding and subtracting these equations
gives z = m2 + n2 and y = m2 − n2, and from x2 = (z − y)(z + y) = m2n2 and
x ∈ N we deduce that x = 2mn.

Note that we must have gcd(m,n) = 1: in fact, any common divisor of m
and n would divide x, y and z contradicting our assumption that our triple be
primitive. We have shown:

Theorem 5.13. If (x, y, z) is a primitive Pythagorean triple with x even, then
there exist coprime integers m,n ∈ N such that x = 2mn, y = m2 − n2 and
z = m2 + n2.

Note that if y is even, then the general solution is given by x = m2 − n2,
y = 2mn and z = m2 + n2. Moreover, if we drop the condition that the triples
be primitive then the theorem continues to hold if we also drop the condition
that the integers m,n be relatively prime.

Lagrange’s Trick

The same technique we used for solving x2 + y2 = z2 can be used to solve
equations of the type x2 + ay2 = z2: just write the equation in the form ay2 =
(z − x)(z + x) and use unique factorization.

Equations like x2 + y2 = 2z2 at first seem intractable using this approach
because we can’t produce a difference of squares. Lagrange, however, saw that
in this case multiplication by 2 saves the day because (2z)2 = 2x2 + 2y2 =
(x + y)2 + (x − y)2, hence (2z − x − y)(2z + x + y) = (x − y)2, and now the
solution proceeds exactly as for Pythagorean triples.
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Let us now show that we can do something similar for any equation of type
AX2 + BY 2 = CZ2 having at least one solution. First, multiplying through by
A shows that it is sufficient to consider equations X2 + aY 2 = bZ2. Assume
that (x, y, z) is a solution of this equation. Then

(bzZ)2 = bz2X2 + abz2Y 2

= (x2 + ay2)X2 + (ax2 + a2y2)Y 2

= (xX + ayY )2 + a(yX − xY )2.

Thus a(yX − xY )2 = (bzZ)2 − (xX + ayY )2 is a difference of squares, and we
can proceed as for Pythagoren triples. We have proved:

Theorem 5.14. If the equation ax2 + by2 = cz2 has a nontrivial solution
in integers, then this equation can be factored over the integers (possibly after
multiplying through by a suitable integer).

Exercises

5.1 Solve the diophantine equation x2 + 2y2 = z2.

5.2 Solve the diophantine equation x2 − 2y2 = z2.

5.3 Solve the diophantine equation x2 + y2 = 2z2.

5.4 Solve the diophantine equation x2 − y2 = 3.

5.5 Prove that each odd prime p can be written as a difference of squares of natural
numbers (p = y2 − x2 for x, y ∈ N) in a unique way.

5.6 Fermat repeatedly challenged English mathematicians by sending them problems
he claimed to have solved and asking for proofs. Two of them were the following
that he sent to Wallis:

• Prove that the only solution of x2 + 2 = y3 in positive integers is given by
x = 5 and y = 3;

• Prove that the only solution of x2 + 4 = y3 in positive integers is given by
x = 11 and y = 5.

In a letter to his English colleague Digby, Wallis called these problems trivial and
useless, and mentioned a couple of problems that he claimed were of a similar
nature:

• x2 + 12 = y4 has unique solution x = 2, y = 2 in integers;

• x4 + 9 = y2 has unique solution x = 2, y = 5 in integers;

• x3 − y3 = 20 has no solution in integers;

• x3 − y3 = 19 has unique solution x = 3, y = 2 in integers.
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When Fermat learned about Wallis’s comments, he called Wallis’s problems men-
tioned above “amusements for a three-day arithmetician” in a letter to Digby.
In fact, while Fermat’s problems were hard (and maybe not even solvable using
the mathematics known in his times), Wallis’s claims are easy to prove. Do this.

5.7 Assume that ab = rxn for a, b, r, x ∈ N and gcd(a, b) = 1. Show that there exist
u, v, y, z ∈ N such that a = uyn, b = vzn, and uv = r.

5.8 Use infinite descent to prove that
√

3 is irrational.

5.9 Let p be a prime; show that x3 + py3 + p2z3 = 0 does not have a solution.
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