
Chapter 4

The Arithmetic of Z

In this chapter, we start by introducing the concept of congruences; these are
used in our proof (going back to Gauss1) that every integer has a unique prime
factorization. We will also discuss the Euclidean Algorithm, a basic tool in
computational number theory; we shall see later that the same method also
works for polynomial rings K[X] over fields K.

4.1 Divisibility

Just as subtraction was not defined for all pairs of natural numbers (in N, we
could have defined m− n for m,n ∈ N with m ≥ n), division is not defined for
all pairs of nonzero integers. The theory of divisibility studies this observation
in more detail. We say that an integer b ∈ Z divides a ∈ Z (and write b | a) if
there exists an integer q ∈ Z such that a = bq.

Actually this definition makes sense in general domains (a commutative ring
with 1 and without zero divisors), and even in monoids. A monoid is a set M
on which a multiplication is defined (a map M ×M −→ M) such that

1. multiplication is commutative and associative;

2. M contains a neutral element (1 ∈ M);

3. M is cancellative: if xy = xz for x, y, z ∈ M , then x = y.

Examples for monoids are the nonzero natural numbers, the nonzero integers,
as well as e.g. the following sets:

1. M = {1, 3, 5, 7, . . .} = 2N + 1;

2. M = {1, 2, 4, 6, . . .} = 2N ∪ {1};

3. M = {1, 5, 9, 13, . . .} = 4N + 1

1Carl-Friedrich Gauss: 1777 (Braunschweig, Germany) – 1855 (Göttingen, Germany)
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4. M = {1, 2, 4, 8, 16, . . .}.

5. the nonzero elements in a domain R.

The main properties of the divisibility relation follow directly from the def-
inition:

Proposition 4.1. For all elements a, b, c of a monoid, we have

1. 1 | a and a | a;

2. if a | b and b | c, then a | c.

The proofs are immediate. For showing the second claim, observe that we
have b = aq and c = br for q, r ∈ M ; but then c = br = a(qr), hence a | c.

For domains, we have in addition a result involving the additive structure:

Proposition 4.2. Let a, b, c be elements in some domain R. If a | b and a | c,
then a | (b± c).

Proof. These are formal consequences of the definition: We have b = aq and
c = ar for q, r ∈ R; then b± c = a(q ± r) implies that a | (b± c).

Elements dividing 1 are called units; the units in Z are −1 and +1. First of
all, they are units because they divide 1. Now assume that r ∈ Z is a unit; then
there exists an element s ∈ Z with rs = 1. Clearly r, s 6= 0, hence |r|, |s| ≥ 1. If
|r| > 1, then 0 < |s| < 1, but there are no integers strictly between 0 and 1.

Proposition 4.3. The set M× of units in some monoid forms a group.

Proof. We have to check the axioms. First, 1 ∈ M× shows the existence of a
neutral element. If u is a unit, then by definition there is some v ∈ M such that
uv = 1. But then v = u−1 is also a unit, so inverses exist. Finally, if u and
v are units, then uu′ = vv′ = 1 for some u′, v′ ∈ M , and then (uv)(u′v′) = 1,
hence uv is a unit.

Note that commutativity and associativity are inherited from M : if these
axioms hold for all elements in M , then they surely will hold for all elements in
M×.

We now give two important definitions. Let M be a monoid; then a non-unit
p ∈ M is called

• irreducible if it only has trivial factorizations, i.e. if p = ab for a, b ∈ M
implies that a ∈ M× or b ∈ M×.

• prime if p | ab for a, b ∈ M implies that p | a or p | b.

Being prime is a stronger property than being irreducible:

Proposition 4.4. Primes are irreducible.
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Proof. Let p be prime. We want to show it’s irreducible, so assume that p = ab;
we have to prove that a or b is a unit. Now clearly p | ab, and since p is prime,
we have p | a or p | b. Assume without loss of generality that p | a. Then a = pc
for some c ∈ M , hence p = ab = pbc, and since M is cancellative we deduce
that 1 = bc. Thus b is a unit, and this concludes the proof.

It is not true at all that irreducibles are always prime. It is basically in order
to have lots of examples that we have dealt with monoids here. Consider e.g.
the monoid M = {1, 2, 4, 6, . . .}; here 2 is irreducible since clearly 2 = 1 ·2 = 2 ·1
are the only factorizations of 2. On the other hand, 2 is not prime: we have
2 | 6 · 6 since 36 = 2 · 18, but 2 - 6 because 6 is not divisible by 2 in M .

Now we claim

Proposition 4.5. There are infinitely many primes in Z.

Proof. We give a proof by contradiction. Assume that there are only finitely
many primes, namly p1 = 2, . . . , pr, and consider the integer N = p1 · · · pr + 1.
Then N > 1, hence it is divisible by a prime p. This prime p is not in our list:
if we had p = pi, then p | N and p | N − 1 = p1 · · · pi · · · pr, hence p divides
1 = N − (N − 1): contradiction, because p is a prime, hence can’t be a unit by
definition.

This is a really nice proof; unfortunately, it is not completely correct. In
order to see what is missing, consider the monoid M = {1, 5, 9, 13, . . .}. We can
imitate the proof above as follows: assume that p1 = 5, . . . , pr is the list of
all primes in M (the number 5 is indeed prime, as is easily shown: if 5 | ab for
a, b ∈ M , then 5 | ab in Z, hence we may assume that 5 | a in Z. But this means
a = 5c, and we see that c must have the form 4n + 1 just like 5 and a: thus
5 | a in M). Then we form N = p1 · · · pr + 4 ∈ M ; clearly N > 1, so it must be
divisible by some prime p, and as above we see that p 6= pj for 1 ≤ j ≤ r.

What’s wrong with this proof? Let us start with the list of primes consisting
only of 5. Then N = 5 + 4 = 9. And although N > 1, N does not contain
any prime factor because it is irreducible, but not prime! In fact, we have
9 | 21 · 21 = 9 · 49, but 9 - 21.

Thus what is missing in our proof is the following:

Proposition 4.6. Every integer n > 1 has a factorization into irreducible ele-
ments.

Proof. This is clear if N = 2; now do induction on N and assume the claim is
true for all N < n. If n is irreducible, everything is fine; if not, then n = ab,
and by induction assumption both a and b are products of irreducibles, hence
so is n.

The proof of Prop. 4.5 shows that there are infinitely many irreducibles in
Z: this is because every N > 1 in Z (or in M = 4N + 1) is divisible by an
irreducible element.

32



The claim that there exist infinitely many primes in Z will be complete
once we have proved that irreducibles are prime in Z. We will do this using
congruences, which we will discuss next.

4.2 Congruences

Congruences are a very clever notation invented by Gauss (and published in
1801 in his “Disquisitiones Arithmeticae”) to denote the residue of a number a
upon division by a nonzero integer m. More precisely, he wrote a ≡ b mod m if
m | (a− b). for elements a, b, m ∈ Z.

Examples.

• 10 ≡ 3 mod 7;

• 10 ≡ 0 mod 5;

• 5 ≡ 2 ≡ −1 mod 3.

The rules for divisibility can now be transferred painlessly to congruences:
first we observe

Proposition 4.7. Congruence between integers is an equivalence relation.

Proof. Recall that a relation is called an equivalence relation if it is reflexive,
symmetric and transitive. In our case, we have to show that the relation ≡ has
the following properties:

• reflexivity: a ≡ a mod m;

• symmetry: a ≡ b mod m implies b ≡ a mod m;

• transitivity: a ≡ b mod m and b ≡ c mod m imply a ≡ c mod m

for a, b, c ∈ Z and m ∈ Z \ {0}.
The proofs are straightforward. In fact, a ≡ a mod m means m | (a−a), and

every integer m 6= 0 divides 0. Similarly, a ≡ b mod m is equivalent to m | (a−b);
but this implies m | (b − a), hence b ≡ a mod m. Finally, if a ≡ b mod m and
b ≡ c mod m, then m | (b − a) and m | (c − b), hence m divides the sum
c− a = (c− b) + (b− a), and we find a ≡ c mod m as claimed.

Since ≡ defines an equivalence relation, it makes sense to talk about equiv-
alence classes. The equivalence class [a] (or [a]m if we want to express the
dependence on the modulus m) of an integer a consists of all integers b ∈ Z
such that b ≡ a mod m; in particular, every residue class contains infinitely
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many integers. In the special case m = 3, for example, we have

[0] = {. . . ,−6,−3, 0, 3, 6, . . .},
[1] = {. . . ,−5,−2, 1, 4, 7, . . .},
[2] = {. . . ,−4,−1, 2, 5, 8, . . .},
[3] = {. . . ,−3, 0, 3, 6, 9, . . .} = [0],

etc. Note that [0] = [3] = [6] = . . . (in fact, [0] = [a] for any a ∈ [0]), and
similarly [1] = [4] = . . .. In general, we have [a] = [a′] if and only if a ≡
a′ mod m, that is, if and only if m | (a− a′).

In the case m = 3, there were exactly 3 different residue classes modulo 3,
namely [0], [1], and [2] (or, say, [0], [1], and [−1] since [−1] = [2]). This holds
in general:

Lemma 4.8. For any integer m > 1, there are exactly m different residue
classes modulo m, namely [0], [1], [2], . . . , [m− 1].

Proof. We first show that these classes are pairwise distinct. To this end, assume
that [a] = [b] for 0 ≤ a, b < m; this implies b ∈ [a], hence a ≡ b mod m or
m | (b− a): but since |b− a| < m, this can only happen if a = b.

Next, there are no other residue classes: given any class [a], we write a =
mq+r with 0 ≤ r < m (the division algorithm at work again), and then [a] = [r]
is one of the classes listed above.

The set {0, 1, 2, . . . ,m − 1} is often called a complete set of representatives
modulo m for this reason. Sometimes we write r + mZ instead of [r].

The one thing that makes congruences really useful is the fact that we can
define a ring structure on the set of residue classes. This is fundamental, so let
us do this in detail.

The elements of our ring Z/mZ will be the residue classes [0], [1], . . . , [m−1]
modulo m. We have to define an addition and a multiplication and then verify
the ring axioms.

• Addition ⊕: Given two classes [a] and [b], we put [a] ⊕ [b] = [a + b]. We
have to check that this is well defined: assume that [a] = [a′] and [b] = [b′]; then
we have to show that [a + b] = [a′ + b′]. But this is easy: we have a− a′ ∈ mZ,
say a − a′ = mA, and similarly b − b′ = mB. But then (a + b) − (a′ + b′) =
m(A + B) ∈ mZ, hence [a + b] = [a′ + b′].

The neutral element is the residue class [0] = mZ, and the inverse element of
[a] is [−a], or, if you prefer, [m−a]. In fact, we have [a]⊕ [0] = [a+0] = [a] and
[a]⊕ [−a] = [a+(−a)] = [0]. The law of associativity and the commutativity are
inherited from the corresponding properties of integers: since e.g. (a + b) + c =
a + (b + c), we have ([a]⊕ [b])⊕ [c] = [a]⊕ ([b]⊕ [c]).

• Multiplication �: of course we put [a] � [b] = [ab]. The verification that
this is well defined is left as an exercise. The neutral element is the class [1].

• Distributive Law: Again, ([a]⊕ [b])� [c] = [a]� [c]⊕ [b]� [c] follows from
the corresponding properties of integers.
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Theorem 4.9. The residue classes [0], [1], . . . , [m− 1] modulo m form a ring
Z/mZ with respect to addition ⊕ and multiplication �.

Now that we have introduced the rings that we will study for some time to
come, we simplify the notation by writing + and · instead of ⊕ and �. Moreover,
we will drop our references to classes and deal only with the integers representing
them; in order to make clear that we are dealing with residue classes, we write
≡ instead of = and add a “mod m” at the end. What this means in practice is
that we identify Z/mZ with the set of integers {0, 1, . . . ,m− 1}.

Applications: ISBN (International Standard Book Num-
ber)

From the 1970s onward books are assigned an ISBN consisting of four parts:
the first block specifies the country (or rather the language of the country),
the second block gives information about the publishing company, the third
about the book within that company, and the last digit is a check digit that
is computed as follows: multiply the digits of the ISBN by 1, 2, 3, . . . , 10,
starting on the left; the check digit is the integers ≤ 10 for which the sum of
these product is ≡ 0 mod 11. The check ‘digit’ X stands for 10.

Example: compute the check digit of the ISBN 0-387-94225-?. We find
1 ·0+2 ·3+3 ·8+4 ·7+5 ·9+6 ·4+7 ·2+8 ·2+9 ·5+10? ≡ 4+10? mod 11, and
since 10 ≡ −1 mod 11, this gives 4−? ≡ 0 mod 11, so ? = 4, and the complete
ISBN is 0-387-94225-4.

It is easy to see that if you type in an ISBN and make a single error, then
the check digit will catch it; thus the ISBN is an example of a 1-error detecting
code.

4.3 Unique Factorization in Z
Before we can prove that irreducibles are prime, we need

Proposition 4.10. If p is irreducible, then Z/pZ is a field.

Let us do some work first. For any rational number x ∈ Q, define the ceiling
dxe of x to be the smallest integer ≥ x; by definition we have

x ≤ dxe < x + 1.

Put x = p
a for a > 0 and multiply through by a; then p ≤ ad p

ae < p + a, or,
after subtracting p, 0 ≤ ad p

ae − p < a.

Proof of Prop. 4.10. We have to show that if [a] 6= [0], i.e., if 0 < a < p, then
there exists a residue class [b] such that [ab] = [1].

This is trivial if a = 1, so assume a > 1 and put r1 = dp/ae; then 0 ≤
ar1 − p < a. If we had ar1 − p = 0, then the fact that p is irreducible implies
a = 1 or a = p, contradicting our assumption. Thus 0 < ar1 − p < a.
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If a1 = ar1 − p = 1, then b = r1 is the inverse of a: in fact, reducing
ar1 − p = 1 modulo p gives ar1 ≡ 1 mod p, i.e., [a][r1] = [1].

If a1 > 1, then put r2 = dp/a1e and repeat the above argument. If a1r2−p =
1, then [a][r1r2] = [1], and b = r1r2 is the desired inverse of a; if not repeat this
step. Since ai decreases by at least 1 in each step, the process must eventually
terminate: if an = 1, then we have the following equations:

0 < a1 = ar1 − p < a,

0 < a2 = a1r2 − p < a1,

. . .

0 < an−1 = an−2rn−1 − p < an−2

an = an−1rn = 1.

These equations give rise to the following congruences:

a1 ≡ ar1 mod p,

a2 ≡ a1r2 mod p,

. . .

an−1 ≡ an−2rn−1 mod p,

1 = an ≡ an−1rn mod p.

Starting with the last and working our way up we get

1 = an ≡ an−1rnequivan−2rn−1rn . . . ≡ a1r2r3 · · · rn ≡ ar1r2 · · · rn mod p.

This shows that b ≡ r1r2 · · · rn mod p is the multiplicative inverse of a mod
p.

Here’s an example: let us compute the inverse of the residue class [5] in
Z/13Z. We find a = 5, p = 13, r1 = d 13

5 e = 3, hence a1 = ar1 − p = 2.
Repeating this step provides us with r2 = d 13

2 e = 7 and a2 = a1r2 − p = 1.
Thus r1r2 ≡ 3 · 7 ≡ 8 mod 13, and [5][8] = [1].

Remark. Fields F have very nice properties; one of them is that linear equa-
tions ax = b with a, b ∈ F and a 6= 0 always have a unique solution: in fact,
since a 6= 0, it has an inverse element a−1 ∈ F , and multiplying through by a−1

we get x = a−1b. This does not work in general rings: the equation 2x = 1 does
not have a solution in Z/4Z, and the linear equation 2x = 2 has two solutions,
namely x = [1] and x = [3].

The main result on which unique factorization will be built is the following:

Proposition 4.11. Irreducibles in Z are prime.

Proof. Assume that p is irreducible and that p | ab. If p - a and p - b, then [a] and
[b] are invertible modulo p; but then [ab] has an inverse (if [a][r] = [b][s] = [1],
then [ab][rs] = [1]), and therefore p - ab. This proves that p | a or p | b.
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This means in particular that every integer in Z has a factorization into
primes. We will prove in a minute that this factorization is unique; here we
will give an example showing that this is not obvious: consider the monoid
M = {1, 5, 9, 13, . . .} of positive integers of the form 4n + 1 (this example is
actually due to Hilbert). It is clear that every integer in M has a factorization
into irreducibles, but it is not unique: for example, we have 21 · 33 = 9 · 77, and
9, 21, 33 and 77 are all irreducible in M The reason why unique factorization
fails is the existence of irreducibles that aren’t prime.

The theorem of unique factorization asserts that every integer has a prime
factorization, and that it is unique up to the order of the factors.

Theorem 4.12. Every integer n ≥ 2 has a prime factorization n = p1 · · · pr

(with possibly repeated factors). This factorization is essentially unique, that is:
if n = p1 · · · pr and n = q1 · · · qs are prime factorizations of an integer n, then
r = s, and we can reorder the qj in such a way that pj = qj for 1 ≤ j ≤ r.

A partial result in the direction of Theorem 4.12 can already be found in
Euclid’s elements; the first explicit statement and proof was given by Gauss in
1801.

Proof. We already know that prime factorizations exist, so we only have to
deal with uniqueness. This will be proved by induction on min{r, s}, i.e. on
the minimal number of prime factors of n. We may assume without loss of
generality that r ≤ s.

If r = 0, then n = 1, and n = 1 = q1 · · · qs implies s = 0.
Now assume that every integer that is a product of at most r − 1 prime

factors has a unique prime factorization, and consider n = p1 · · · pr = q1 · · · qs.
Since p1 is a prime that divides n = q1 · · · qs, it must divide one of the factors,
say p1 | q1 (after rearranging the qi if necessary). But q1 is prime, so its only
positive divisors are 1 and q1; since p1 is a prime, it is a nonunit, and we conclude
that p1 = q1. Canceling p1 shows that p2 · · · pr = q2 · · · qs, and by induction
assumption we have r = s, and pj = qj after rearranging the qi if necessary.

Remark. There is a simple reason for doing induction on the minimal number
of prime factors and not simply on the number of prime factors of n: the fact
that the number of prime factors of an integer is well defined is a consequence
of the result we wanted to prove! In fact, in M = {1, 5, 9, . . .} numbers may
have factorizations into irreducibles of different lengths: an example is 225 =
9 · 5 · 5 = 15 · 15.

Some Applications

We have already seen that integers are squares of rational numbers if and only
if they are squares of integers. Here we shall use unique factorization to show
that

√
p is irrational. For assume not: then p = r2/s2 for r, s ∈ N, and assume

that r and s are coprime (if they are not, cancel). Thus ps2 = r2. Thus p | r2,
and since p is prime, we must have p | r, say r = pt. Then ps2 = p2t2, hence
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s2 = pt2. But then p | s2, hence p | s since p is prime, and this is a contradiction,
since we now have shown that p | r and p | s although we have assumed that
they are coprime.

4.4 Greatest Common Divisors in Z
We will now introduce greatest common divisors: we say that d is a greatest
common divisor of a, b ∈ Z and write d = gcd(a, b) if d satisfies the following
two properties:

1. d | a, d | b;

2. if e ∈ Z satisfies e | a and e | b, then e | d.

We can use the unique factorization property to give a formula for the gcd
of two integers. Before we do so, let us introduce some notation. We can write
an a ∈ Z as a product of primes. In fact fact we can write a = ±

∏
pai

i , where
the product is over all irreducible elements p1, p2, p3, . . . , and where at most
finitely many ai are nonzero. In order to avoid the ± in our formulas, let us
restrict to positive integers from now on.

Lemma 4.13. For integers a, b ∈ N we have b | a if and only if bi ≤ ai for all
i, where a =

∏
pai

i and b =
∏

pbi
i are the prime factorizations of a and b.

Proof. We have b | a if and only if there is a c ∈ N such that a = bc. Let
c =

∏
pci

i be its prime factorization. Then ci ≥ 0 for all i, and ai = bi + ci,
hence b | a is equivalent to ai ≥ bi for all i.

Here’s our formula for gcd’s:

Theorem 4.14. The gcd of two nonzero integers

a =
∏

pai
1 and b =

∏
pbi

i

is given by
d =

∏
p
min{ai,bi}
i .

Proof. We have to prove the two properties characterizing gcd’s:

1. d | a and d | b. But this follows immediately from Lemma 4.13.

2. If d′ | a and d′ | b, then d′ | d. In fact, write down the prime factorization
d′ =

∏
p

d′
i

i of d′. Then d′ | a and d′ | b imply d′i ≤ min(ai, bi) = di, hence
d′ | d.

Now assume that d and d′ are gcd’s of a and b. Then d | d′ by 2. since d′ is
a gcd, and d′ | d since d is a gcd, hence d′ = ±d.
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For the ring Z of integers, we have much more than the mere existence of
gcd’s: the gcd of two integers a, b ∈ Z has a “Bezout representation”,2 that is,
if d = gcd(a, b), then there exist integers m,n ∈ Z such that d = am + bn.

Theorem 4.15 (Bezout’s Lemma). Assume that d = gcd(a, b) for a, b ∈ Z;
then d has a Bezout representation.

Proof. Consider the set D = aZ + bZ = {am + bn : m,n ∈ Z}. Clearly D is a
nonempty set, and if c ∈ D then we also have −c ∈ D. In particular, D contains
positive integers.

Let d be the smallest positive integer in D; we claim that d = gcd(a, b).
There are two things to show:
Claim 1: d is a common divisor of a and b. By symmetry, it is sufficient to
show that d | a. Write a = rd + s with 0 ≤ s < d; from d = am + bn we get
s = rd− a = r(am+ bn)− a = a(rm− 1)+ b(rn), hence s ∈ D. The minimality
of d implies s = 0, hence d | m.
Claim 2: if e is a common divisor of a and b, then e | d. Assume that e | a and
e | b. Since d = am + bn, we conclude that e | d.

The existence of the Bezout representation is a simple consequence of the
fact that d ∈ D.

Note that the key of the proof is the existence of a division with remainder.
Bezout’s Lemma can be used to give an important generalization of the

property p | ab =⇒ p | a or p | b of primes p:

Proposition 4.16. If m | ab and gcd(m, b) = 1, then m | a.

Proof. Write ab = mn; by Bezout, there are x, y ∈ Z such that mx + by = 1.
Multiplying through by a gives a = max + aby = max + mny = m(ax + ny),
that is, m | a.

Finally, observe that canceling factors in congruences is dangerous: we have
2 ≡ 8 mod 6, but not 1 ≡ 4 mod 6. Here’s what we’re allowed to do:

Proposition 4.17. If ac ≡ bc mod m, then a ≡ b mod m
gcd(m,c) .

Proof. We have m | (ac−bc) = c(a−b). Write d = gcd(m, c), m = dm′, c = dc′,
and note that gcd(m′, c′) = 1. From dm′ | dc′(a − b) we deduce immediately
that m′ | c′(a− b); since gcd(m′, c′) = 1, we even have m′ | (a− b) by Prop 4.16,
i.e. a ≡ b mod m

gcd(m,c) .

4.5 The Euclidean Algorithm

In most modern textbooks, Unique Factorization is proved using the Euclidean
algorithm; it has the advantage that a similar proof can also be used for other
rings, e.g. polynomial rings K[X] over fields K. The Euclidean algorithm

2Etienne Bezout: 1730 (Nemours, France) – 1783 (Basses-Loges, France)
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is a procedure that computes the gcd of integers without using their prime
factorization (which may be difficult to obtain if the numbers involved are large).
Moreover, it allows us to compute a Bezout representation of this gcd (note that
our proof of Thm. 4.15 was an existence proof, giving no hint at how to compute
such a representation).

Given integers m and n, there are uniquely determined integers q1 and r1

such that m = q1n + r1 and 0 ≤ r1 < n. Repeating this process with n and r1,
we get n = r1q2 + r2 with 0 ≤ r2 < r1, etc. Since n > r1 > r2 > . . . ≥ 0, one of
the ri, say rn+1, must eventually be 0:

m = q1n + r1 (4.1)
n = q2r1 + r2 (4.2)
r1 = q3r2 + r3 (4.3)

. . .

rn−2 = qnrn−1 + rn (4.4)
rn−1 = qn+1rn (4.5)

Example: m = 56, n = 35

56 = 1 · 35 + 21
35 = 1 · 21 + 14
21 = 1 · 14 + 7
14 = 2 · 7

Note that the last ri that does not vanish (namely r3 = 7) is the gcd of m
and n. This is no accident: we claim that rn = gcd(m,n) in general. For a
proof, we have to verify two things:

Claim 1: rn is a common divisor of m and n. Equation (4.5) shows rn |
rn−1; plugging this into (4.4) we find rn | rn−2, and going back we eventually
find rn | r1 from (4.3), rn | n from (4.2) and finally rn | m from (4.1). In
particular, rn is a common divisor of m and n.

Claim 2: if e is a common divisor of m and n, then e | rn. This is proved
by reversing the argument above: (4.1) shows that e | r1, (4.2) then gives e | r2,
and finally we find e | rn from (4.5) as claimed.

The Euclidean algorithm does more than just compute the gcd: take our
example m = 56 and n = 35; writing the third line as gcd(m,n) = 7 = 21−1 ·14
and replacing the 14 by 14 = 35 − 1 · 21 coming from the second line we get
gcd(m,n) = 21 − 1 · (35 − 1 · 21) = 2 · 21 − 1 · 35. Now 21 = 56 − 1 · 35 gives
gcd(m,n) = 2 · (56− 1 · 35)− 1 · 35 = 2 · 56− 3 · 35, and we have found a Bezout
representation of the gcd of 56 and 35.

This works in complete generality: (4.4) says rn = rn−2 − qnrn−1; the line
before, which rn−1 = rn−3 − qn−1rn−2, allows us to express rn as a Z-linear
combination of rn−2 and rn−3, and going back we eventually find an expression
of rn as a Z-linear combination of a and b.
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Bezout representations have an important practical application: they allow
us to compute multiplicative inverses in Z/pZ. In fact, let [a] denote a nonzero
residue class modulo p; since Z/pZ is a field, [a] must have a multiplicative
inverse, that is, there must be a residue class [b] such that [ab] = [1]. Since there
are only finitely many residue classes, this can always be done by trial and error
(unless p is large): for example, let us find the multiplicative inverse of [2] in
Z/5Z: multiplying [2] successively by [1], [2], [3], [4] we find [2] · [3] = [6] = [1];
thus [2]−1 = [3] (we occasionally also write 1

2 ≡ 3 mod 5).
Computing the inverse of [2] in Z/pZ is actually always easy: note that we

want an integer b such that [2b] = [1]; but [1] = [p + 1], hence we can always
take b = p+1

2 .
In general, however, computing inverses is done using Bezout representa-

tions. Assume that gcd(a, p) = 1 (otherwise there is no multiplicative inverse),
compute integers x, y ∈ Z such that 1 = ax+py; reducing this equation modulo
p gives 1 ≡ ax mod p, i.e., [a][x] = [1], or [a]−1 = [x].

4.1 Prove that 2 | n(n + 1) for all n ∈ N
a) using induction
b) directly.

4.2 Prove that 3 | n(n2 − 1) for all n ∈ N. Generalizations?

4.3 Prove that 8 | (n2 − 1) for all odd n ∈ N.

4.4 Prove or disprove: if n | ab and n - a, then n | b.

4.5 Show that there are arbitrary long sequences of composite numbers (Hint: ob-
serve that 2 · 3 + 2 and 2 · 3 + 3 can be seen to be composite without performing
any division; generalize!)

4.6 Show that divisibility defines a partial order on Z by writing a ≤ b if b | a.

4.7 Show that, for integers a, b, c, d, m ∈ Z with m > 0, we have

• a ≡ b mod m =⇒ a ≡ b mod n for every n | m;

• a ≡ b mod m and c ≡ d mod m =⇒ a+c ≡ b+d mod m and ac ≡ bd mod m;

• a ≡ b mod m =⇒ ac ≡ bc mod m for any c ∈ Z.

4.8 Show that there are infinitely many primes of the form 3n− 1.

4.9 Try to extend the above proof to the case of primes of the form 3n + 1 (and
5n− 1). What goes wrong?

4.10 Show that primes p = c2 + 2d2 satisfy p = 2 or p ≡ 1, 3 mod 8.

4.11 Show that primes p = c2 − 2d2 satisfy p = 2 or p ≡ 1, 7 mod 8.

4.12 Show that primes p = c2 + 3d2 satisfy p = 3 or p ≡ 1 mod 3.
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4.13 Compute d = gcd(77, 105) and write d as a Z-linear combination of 77 and 105.

4.14 Check the addition and multiplication table for the ring Z/3Z:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

4.15 Compute addition and multiplication tables for the rings Z/5Z and Z/6Z.

4.16 Compute the multiplicative inverse of [17] in Z/101Z.

4.17 Compute gcd(2m − 1, 2n − 1) for small values of m, n ≥ 1 until you discover a
general formula for d.

4.18 Let U1 = U2 = 1, and Un+1 = Un + Un−1 denote the Fibonacci numbers. Find
a formula for gcd(Um, Un).

4.19 Show that the Fermat numbers Fn = 22n

+ 1 are pairwise coprime.

4.20 Show that there are infinitely many primes of the form p = 4n + 3.

4.21 Show that there are infinitely many primes of the form p = 3n + 2.

4.22 Compute gcd(x2 + 2x + 2, x2 − x− 2) over Z/mZ for m = 2, 3, 5 and 7, and find
its Bezout representation.

4.23 Let a, b ∈ N be coprime, and let r ∈ N be a divisor of ab. Put u = gcd(a, r) and
v = gcd(b, r), and show that r = uv.

4.24 Assume that Mp = 2p − 1 is a prime. List the complete set of (positive) divisors
of Np = 2p−1Mp, and compute their sum. Conclude that if Mp is prime, then
Np is a perfect number (a number n is called perfect if the sum of its (positive)
divisors equals 2n).

Euler later proved that every even perfect number has the form 2p−1Mp for some
Mersenne prime Mp. It is conjectured (but not known) that odd perfect numbers
do not exist.

4.25 Compute the last two digits of 2719.

4.26 For primes p ∈ {3, 5, 7, 11, 13}, compute A ≡ ( p−1
2

)! mod p. Can you find a
pattern? If not, compute B ≡ A2 mod p. Formulate a conjecture.

4.27 Check which of the primes p ∈ {3, 5, 7, 11, 13} can be written as p = a2 + b2 with
integers a, b ∈ N (e.g. 5 = 12 + 22). Formulate a conjecture.
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4.28 For some small primes p = 4n + 1, compute the smallest residue (in absolute
value) of a mod p, where a =

�
2n
n

�
. (Example: for p = 5, we have n = 1 and�

2
1

�
= 2 ≡ 2 mod 5.) Compare with the results from the preceding Exercise.

Formulate a conjecture and test it for a few more primes.

4.29 a) Given a 5-liter jar and a 3-liter jar and an unlimited supply of water, how do
you measure out 4 liters exactly?
b) Can you also measure out 1, 2 and 3 liters?
c) Which quantities can you measure out if you are given a 6-liter and a 9-liter
jar?
d) Formulate a general conjecture. Can you prove it (at least partially)?

4.30 Show that a number n = dn . . . d1d0 = dn10n + . . . + d1 · 10 + d0 satisfies the
congruence n ≡ dn + . . . + d1 + d0 mod 9: the residue class modulo 9 of any
integer is congruent to the sum of the digits of n.

4.31 Show that a number dn . . . d1d0 = dn10n+. . .+d1 ·10+d0 satisfies the congruence
n ≡ (−1)ndn + . . . + d2 − d1 + d0 mod 11.

4.32 Invent a simple method to compute the residue class of n = dn . . . d1d0 = dn10n+
. . . + d1 · 10 + d0 modulo 7.

4.33 Compute the last digit of 7100. Compute the last two digits of 365.
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