
Chapter 3

The Field Q of Rational
Numbers

In this chapter we are going to construct the rational number from the integers.
Historically, the positive rational numbers came first: the Babylonians, Egyp-
tians and Greeks knew how to work with fractions, but negative numbers were
introduced by the Hindus hundreds of years later. It is possible to reflect this
in the build-up of the rationals from the natural numbers by first constructing
the positive rational numbers from the naturals, and then introducing negatives
(Landau proceeds like this in his Foundations of Analysis). While being closer
to history, this has the disadvantage of getting a ring structure only at the end.

3.1 The Rational Numbers

Let Z denote the ring of integers and consider the set

V = {(r, s) : r, s ∈ Z, s 6= 0}

of pairs of integers. Let us define an equivalence relation on V by putting

(r, s) ∼ (t, u) ⇐⇒ ru = st.

It is easily seen that this is an equivalence relation, and we now let

[r, s] = {(x, y) ∈ V : (x, y) ∼ (r, s)}

denote the equivalence class of (r, s).
Such an equivalence class [r, s] is called a rational number, and we often

write r
s instead of [r, s]. We denote by Q the set of all equivalence classes [r, s]

with (r, s) ∈ V .
We start studying Q by realizing Z as a subset of Q via the map ι : Z −→ Q

defined by ι(r) = [r, 1]. Then ι is injective; in fact, assume that x, y ∈ Z are
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such that ι(x) = ι(y). Then [x, 1] = [y, 1], i.e., (x, 1) ∼ (y, 1), and by definition
of equivalence in V this means x · 1 = y · 1, hence x = y.

We want to have r
s + t

u = ru+st
su , so we are led to define

[r, s]⊕ [t, u] = [ru + st, su] (3.1)

for r, s, t, u ∈ Z with s, u > 0. This is well defined and agrees with addition on
Z under the identification ι: in fact,

ι(x)⊕ ι(y) = [x, 1]⊕ [y, 1]
= [x · 1 + 1 · y, 1 · 1] = [x + y, 1]
= ι(x + y).

Thus it does not matter whether we add in Z and then identify the result with
a rational number, or first view the integers as elements of Q and add there.

Next we define multiplication of fractions by

[r, s]� [t, u] = [rt, su]. (3.2)

This is motivated by r
s ·

t
u = rt

su . Again, multiplication is well defined and agrees
with multiplication on the subset Z ⊂ Q: we have ι(x)� ι(y) = ι(xy) because

ι(x)� ι(y) = [x, 1]� [y, 1] by definition of ι
= [xy, 1] by definition (3.2)
= ι(xy) by definition of ι

Remark. The map ι : Z −→ Q from the ring Z to the ring of fractions Q
satisfies

ι(x)⊕ ι(y) = ι(x + y),
ι(x)� ι(y) = ι(xy),

Maps R −→ S between rings with these properties (we say that they ‘respect
the ring structure’) are called ring homomorphisms if they map the unit element
of R to the unit element of S. In particular, our ‘identification map’ ι is a ring
homomorphism.

Using these definitions, we can prove associativity, commutativity, distribu-
tivity, thereby verifying that Q is a ring. In fact, Q is even a field!

A field F is a commutative ring in which, informally speaking. we can divide
by nonzero elements: thus F is a field if F satsifies the ring axioms (in particular
we have 1 6= 0), and if in addition

F1 For every r ∈ F \ {0} there is an s ∈ F such that rs = 1.

Observe that F1 holds if and only if F× = F \ {0}.
This is a strong axiom: together with some other ring axioms it implies that

fields are integral domains:
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Proposition 3.1. If F is a field and if xy = 0 for x, y ∈ F , then x = 0 or
y = 0.

Proof. In fact, assume that xy = 0 and y 6= 0. Since the nonzero elements of
F form a group, y has an inverse, that is, there is a z ∈ F such that yz = 1.
But now 0 = xy implies 0 = 0z = (xy)z = x(yz) = x · 1 = x; here we have used
associativity of multiplication.

We have proved

Theorem 3.2. The set Q of rational numbers forms a field with respect to
addition and multiplication.

We can also define powers of rational numbers: if a ∈ Q is nonzero, we put
a0 = 1 and an+1 = an · a. This defines an for all n ∈ N; if n is negative, we put
an = 1/a−n.

We now can prove the well known set of rules anam = an+m, amn = (am)n,
anbn = (ab)n etc.

Binomial Theorem

The next result is called the Binomial Theorem. Before we can state it, we have
to introduce the binomial coefficients. These are defined in terms of factorials, so
we have to define these first. To this end, we put 0! = 1 and (n+1)! = n! ·(n+1)
for n ∈ N. Now we set

(
n
k

)
= n!

k!(n−k)! for 0 ≤ k ≤ n and
(
n
k

)
= 0 if k < 0 or

k > n.

Lemma 3.3. The binomial coefficients are integers. In fact, we have
(
n
k

)
+(

n
k+1

)
=

(
n+1
k+1

)
for n ≥ 0 and k ≥ −1.

Proof. This is a simple computation:(
n

k

)
+

(
n

k + 1

)
=

n!
k!(n− k − 1)!

{ 1
n− k

+
1

k + 1

}
=

n!
k!(n− k − 1)!

n + 1
(n− k)(k + 1)

=
(

n + 1
k + 1

)
.

This calculation is valid for k ≥ 0; for k = −1, we have
(
n
k

)
= 0,

(
n

k+1

)
= 1 =(

n+1
k+1

)
, and the claim holds.

Now we have

Theorem 3.4 (Binomial Theorem). For a, b ∈ Q× and n ∈ N, we have

(a + b)n =
n∑

k=0

(
n

k

)
an−kbk.
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Proof. This is done by induction on n. For n = 1, we have to prove (a + b)1 =∑1
k=0

(
1
k

)
akb1−k =

(
1
0

)
a1b0 +

(
1
1

)
a0b1, which is true since

(
1
0

)
=

(
1
1

)
= 1.

Now assume that the claim holds for some integer n ≥ 1; then

(a + b)n+1 = (a + b)n(a + b) =
( n∑

k=0

(
n

k

)
an−kbk

)
(a + b)

=
n∑

k=0

(
n

k

)
an+1−kbk +

n∑
k=0

(
n

k

)
an−kbk+1

=
n∑

k=0

(
n

k

)
an+1−kbk +

n+1∑
l=1

(
n

l − 1

)
an+1−lbl

=
(

n

0

)
an+1 +

n∑
k=1

((
n

k

)
+

(
n

k − 1

))
an+1−kbk +

(
n

n

)
bn+1

=
(

n + 1
0

)
an+1 +

n∑
k=1

(
n + 1

k

)
an+1−kbk +

(
n + 1
n + 1

)
bn+1

=
n+1∑
k=0

(
n + 1

k

)
an+1−kbk,

which is exactly what we wanted to prove.

3.2 Q as an ordered field

Observe that every rational number can be written as [r, s] with s ≥ 1 (if s ≤ −1,
recall that [r, s] = [−r,−s]). From now on, we will assume that all our rational
numbers are presented like this. We define an order relation < on Q by putting

[r, s] < [t, u] ⇐⇒ ru < st

(recall that s, u ∈ N). This is well defined: if [r, s] = [r′, s′] and [t, u] = [t′, u′],
then rs′ = r′s and tu′ = t′u. Now

[r, s] < [t, u] ⇐⇒ ru < st by definition
⇐⇒ rus′u′ < sts′u′ since s′u′ > 0
⇐⇒ r′suu′ < ss′t′u since rs′ = r′s and tu′ = t′u
⇐⇒ r′u′ < s′t′ since su > 0
⇐⇒ [r′, s′] < [t′, u′] by definition

Now we have

Theorem 3.5. Q is an ordered domain (even field).

Proof. Since exactly one of the relations ru < st, ru = st or ru > st is true by
the trichotomy law for integers, exactly one of x < y, x = y or x > y is true for
x = [r, s] and y = [t, u].
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Next assume that x < y and y < z, where z = [v, w]. Then ru < st and
tw < uv, hence ruw < stw and stw < suv since w, s > 0; transitivity for the
integers gives ruw < suv, and since u > 0, this is equivalent to rw < sv, i.e.,
x < z.

This shows that Q is simply ordered. The rest of the proof that Q is an
ordered domain is left as an exercise.

Thus everything proved for general ordered domains holds for the rationals;
in particular, x2 ≥ 0 for all x ∈ Q, and |x + y| ≤ |x|+ |y| for x, y ∈ Q.

Now let us collect a few simple results that will turn out to be useful.

Lemma 3.6. We have |x| < |y| if and only if n|x| < n|y| for some n ∈ N.

Proof. Exercise.

Proposition 3.7. Let x, y ∈ Q and assume that for every rational ε > 0 we
have |x− y| < ε; then x = y.

Proof. Assume that this is false, i.e. that x − y 6= 0. Then ε = |x − y| is a
positive rational number, so by assumption we have |x − y| < ε. This implies
ε < ε, which is a contradiction.

Proposition 3.8. Let 0 < x < y be rational numbers. Then there is an n ∈ N
such that nx > y.

Proof. Write x = r
s and y = s

t with r, s, t, u ∈ N (here we have used that
x, y > 0). Then x < y is equivalent to ru < st; by the Archimedean property
of the natural numbers there is an n ∈ N such that n(ru) > st. But the last
inequality is equivalent to nx > y.

Division with remainder in Z allows us to introduce the floor function in Q:
for rational numbers x = a

b with b > 0, we put bxc = q if a = bq+r with q, r ∈ Z
and 0 ≤ r < b. Note that this is well defined: if x = c

d with d > 0, c = dq′ + r′

and 0 ≤ r′ < d, then ad = bc, hence ad = bdq+rd, bc = bdq′+br′, and therefore
0 = bd(q− q′)+ rd− r′b. We may assume without loss of generality that q ≥ q′;
if q 6= q′, then q ≥ q′ + 1, hence bd > r′b = bd(q − q′) + rd ≥ bd + rd ≥ bd:
contradiction.

Proposition 3.9. For x ∈ Q, the integer bxc is the unique integer satisfying
x− 1 < bxc ≤ x.

Proof. First, there is exactly one integer m satisfying x − 1 < m ≤ x because
|m − n| < 1 for integers implies |m − n| = 0, hence m = n. It is therefore
sufficient to prove that x− 1 < bxc ≤ x.

To this end, recall that q = bxc is defined for x = a
b by 0 ≤ a − bq < b.

Dividing through by −b and adding x we get x− 1 < q ≤ x as claimed.

For any rational number x, we call 〈x〉 = x − bxc the fractional part of x.
Note that 0 ≤ 〈x〉 < 1 for all rational numbers x ∈ Q.

27



3.3 Irrational Numbers

The irrationality of 2, at least in its geometric form (the side and the diag-
onal of a square are incommensurable) seems to have been discovered by the
Pythagoreans. Although by the time of Euclid it was known that square roots
of nonsquares are irrational, Euclid’s elements only contain the proof that

√
2

is not rational; in this case, a proof can be given depending only on the ‘theory
of the odd and the even’, as the Greeks called the most elementary parts of
number theory.

Theorem 3.10. If n ∈ N is not the square of an integer, then it is not the
square of a rational number.

Proof 1. In fact, if n is not a square of an integer, then it lies between two
squares, that is, we can find an integer a such that a2 < n < (a + 1)2. Assume
that

√
n = p

q with q > 0 minimal. Then p2 = nq2, hence p(p−aq) = p2−apq =
nq2 − apq = q(nq − ap), so

p

q
=

nq − ap

p− aq
.

But a < p
q < a + 1 implies 0 < p − aq < q: this contradicts the minimality of

the denominator q.

Proof 2. 1 Assume that n = A/B with B > 0 minimal; then A/B = nB/A,
hence both of these fractions have the same fractional part, say b/B = 〈A/B〉 =
〈nB/A〉 = a/A with 0 < a < A and 0 < b < B (note that e.g. a = 0 would
imply that n is an integer). But then A/B = a/b, and 0 < b < B contradicts
the minimality of B > 0.

Proof 3. Since n is not a square, at least one prime p divides n to an odd power.
If we had

√
n = b

a , squaring and clearing denominators would give b2n = a2,
and p would divide a2 to an odd power, contradicting unique factorization.

3.4 Historical Remarks

Long before mankind discovered 0 and the negative numbers, they started work-
ing with positive rational numbers. The Babylonians had sexagesimal fractions,
and the Egyptians essentially worked with pure fractions, that is, those that can
be written in the form 1

n . Every fraction was represented by a sum of different
pure fractions: for example, they would have written 2

5 not as 1
5 + 1

5 , but as
2
5 = 1

3 + 1
15 .

Fractions were not regarded as numbers in Euclid’s elements; Eudoxos’ the-
ory of proportions dealt with magnitudes, that is, ‘lengths’ and ‘areas’ etc.
Archimedes and Diophantus, on the other hand, worked freely with positive
rational numbers.

1Due to John Conway.
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Exercises

3.1 For a, b ∈ Q, we have

a ≤ a + b

2
≤ b.

The rational number a+b
2

is called the arithmetic mean of a and b.

3.2 For a, b ∈ Q×, we have

a ≤ 2
1
a

+ 1
b

≤ b.

The rational number 2
1
a

+ 1
b

is called the harmonic mean of a and b.

3.3 Prove that for all a, b ∈ Q×, we have

2
1
a

+ 1
b

≤ a + b

2
.

This is called the inequality between harmonic and arithmetic mean. Show that
equality holds if and only if a = b.

3.4 Which of the proofs of the irrationality of
√

n for nonsquares n generalizes to
m-th roots of integers?
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