
Chapter 2

The Ring Z of Integers

The next step in constructing the rational numbers from N is the construction
of Z, that is, of the (ring of) integers.

2.1 Equivalence Classes and Definition of Inte-
gers

Before we can do that, let us say a few words about equivalence relations. Given
a set S, a relation ∼ is –mathematically speaking – a subset E ⊆ S × S, and
we write s ∼ t for s, t ∈ S if and only if (s, t) ∈ E.

For example, if S = {A,B,C} and E = {(A,B), (B,C)}, then A ∼ B and
B ∼ C, but A 6∼ C.

An equivalence relation is a relation having the following properties:

• reflexitivity: s ∼ s for all s ∈ S;

• symmetry: if s ∼ t for s, t ∈ S, then t ∼ s;

• transitivity: if s ∼ t and t ∼ u for s, t, u ∈ S, then s ∼ u.

In terms of the subset E, these properties can be stated as follows:

• reflexitivity: (s, s) ∈ E for all s ∈ S;

• symmetry: if (s, t) ∈ E for s, t ∈ S, then (t, s) ∈ E;

• transitivity: if (s, t)(t, u) ∈ E for s, t, u ∈ S, then (s, u) ∈ E.

The relation defined on the set {A,B,C} above is not an equivalence relation
(why?). For any equivalence relation on a set S we can define the equivalence
class of s ∈ S as the set of all elements to which s is equivalent:

[s] = {t ∈ S : t ∼ s}.
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Lemma 2.1. Equivalence classes are either disjoint or they coincide.

Proof. Assume that [s] ∩ [t] is nonempty; then there is an element x ∈ S such
that x ∈ [s] and x ∈ [t]. By definition, this implies x ∼ s and and x ∼ t. Since
∼ is an equivalence relation, we deduce s ∼ x and x ∼ t, hence s ∼ t, so t ∈ [s]
and s ∈ [t]. But then [s] ⊆ [t]: y ∈ [s] implies y ∼ s, which together with
s ∼ t gives y ∼ t, hence y ∈ [t]. By symmetry, we also have [t] ⊆ [s], hence
[s] = [t].

Here’s how to do create integers. We can represent every natural number
n as a difference of two natural numbers in many ways, e.g. 2 = 3 − 1 =
4 − 2 = 5 − 3 = . . .. Thus we can represent 2 by the pairs (2, 0), (3, 1), (4, 2),
etc. of natural numbers. If we already knew negative numbers, then of course
−2 = 1− 3 = 2− 4 = . . . would be represented by the pairs (0, 2), (1, 3), (2, 4),
etc. The idea is now to turn everything around and create negative integers
using pairs (m,n) of natural numbers.

We define an equivalence relation on the set

W = {(m,n) : m,n ∈ N}

of such pairs by putting (m,n) = (m′, n′) if m + n′ = m′ + n. This is indeed an
equivalence relation because it is

• reflexive: (m,n) ∼ (m,n);

• symmetric: (m,n) ∼ (m′, n′) =⇒ (n′,m′) ∼ (m,n);

• transitive: (n, m) ∼ (n′,m′) and (n′,m′) ∼ (n′′,m′′) =⇒ (n, m) ∼ (n′′,m′′).

For example, (m,n) ∼ (m,n) holds because m + n = n + m for m,n ∈ N.
Now let [m,n] = {(x, y) : (x, y) ∼ (m,n)} denote the equivalence class of

(m,n), and let Z = {[m,n] : m,n ∈ N} denote the set of all equivalence classes.
We can make N into a subset of Z by identifying a natural number n with the

equivalence class [n, 0]. Moreover, we shall simply write −n for the class [0, n]
and put 0 = [0, 0] (this is a generally accepted abuse of notation: the neutral
element in any additive group is usually denoted by 0).

This ‘identification’ can be given a precise mathematical formulation by
introducing the map ι : N −→ Z that identifies N with a subset of Z: we put
ι(n) = [n, 0]. Now we only are able to ‘identify’ N with its image ι(N) ⊆ Z if ι
does not map two natural numbers to the same integer, that is, if ι is injective.
Let’s check this: assume that ι(m) = ι(n), i.e., that [m, 0] = [n, 0]. By definition
of these equivalence classes this means that (m, 0) ∼ (n, 0), that is, m+0 = n+0.
This implies m = n, hence ι is injective.

We remark that

Z = {. . .− 3,−2,−1, 0, 1, 2, 3, . . .}.

To see this, we have to prove that every (m,n) ∈ W is equivalent to exactly
one element in {−2,−1, 0, 1, 2, . . .}. This follows from the Trichotomy Law: for
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example, if m > n, then m = n + z for some nonzero z ∈ N, hence [m,n] =
[n + z, n] = [z, 0] etc.

We now show that we can define addition, multiplication and an order < on
Z in such a way that the properties of N proved in Chapter 1 continue to hold.

2.2 Addition

We start by defining addition ⊕ on Z. We have to say what [r, s] ⊕ [t, u] is
supposed to be. Clearly we would like to have [r, s] = r − s, [t, u] = t − u, so
the sum should be r− s + t− u = r + t− (s + u) = [r + t, s + u]. With this idea
in mind we now define

[r, s]⊕ [t, u] = [r + t, s + u], (2.1)

where the addition inside the brackets is the addition in N.
Now there’s some work to do. First we have to prove that this addition is

well defined (this is something that comes up whenever we define something
on equivalence classes). What this means is: assume that [r, s] = [r′, s′] and
[t, u] = [t′, u′]. On the one hand, we have

[r, s]⊕ [t, u] = [r + t, s + u].

If we replace the left hand side by [r′, s′]⊕ [t′, u′], then we clearly get

[r′, s′]⊕ [t′, u′] = [r′ + t′, s′ + u′].

But if our addition is to make any sense, then the right hand sides should be
equal because, after all, the left hand sides are. Thus we want to show that

[r′ + t′, s′ + u′] = [r + t, s + t]. (2.2)

We know that [r, s] = [r′, s′], which by definition means (r, s) ∼ (r′, s′), that is,
r + s′ = s + r′. Similarly, [t, u] = [t′, u′] implies t + u′ = u + t′. Adding these
equations and using commutativity and associativity for natural numbers we
get r + t + s′ + u′ = s + u + r′ + t′, which in turn is equivalent to (2.2).

Next we have to show that the two additions agree on N; after all, we are
using the very same symbols for natural numbers 1, 2, . . . and their images 1,
2, . . . under ι in Z. This can only work if, for natural numbers m,n, the sum
m + n is the same whether evaluated in N or in Z. In other words: we want to
be sure that

ι(m + n) = ι(m)⊕ ι(n).

This is a straight forward computation:

ι(m)⊕ ι(n) = [m, 0]⊕ [n, 0] by definition of ι
= [m + n, 0] by (2.1)
= ι(m + n) by definition of ι
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Now that there is no need to distinguish between the two types of addition
anymore, we shall often write + instead of ⊕ for the addition on Z.

Of course we have prove that associativity and commutativity also hold
for our addition in Z. So why is (x + y) + z = x + (y + z) for all x, y, z ∈
Z? Write x = [r, s], y = [t, u] and z = [v, w] with r, s, t, u, v, w ∈ N. Then
(x + y) + z = [r + t, s + u] + [v, w] = [(r + t) + v, (s + u) + w], and similarly
x+(y + z) = [r +(t+ v), s+(u+w)]. Because addition in N is associative, so is
addition in Z (again, observe that there’s no need for invoking induction here).

Exercise. Prove that addition on Z is commutative.

For defining subtraction x − y in Z, we write x = [r, s] and y = [t, u]; we
cannot put x− y = [r − t, s− u] because r − t and s− u might not be natural
numbers; but if they were, we would have [r − t, s − u] = [r + u, s + t], and
nothing prevents us from defining

[r, s]	 [t, u] = [r, s]⊕ [u, t] = [r + u, s + t]. (2.3)

Note that 	 is well defined because the right hand side is. Now it is easy to
prove that Z is a group with respect to addition, and that 0 = [0, 0] is the
neutral element.

What does that mean? A group is a set G of elements together with a
composition, that is, a map + : G × G −→ G that maps a pair of elements
(g, g′) ∈ G × G to another element g + g′ ∈ G; we also demand that this
composition satisfy the following rules:

G1 there is a neutral element 0 ∈ G such that g + 0 = g for all g ∈ G;

G2 for every g ∈ G there is an element g′ ∈ G such that g + g′ = 0 (we shall
write g′ = −g);

G3 the composition is associative: we have (g + g′) + g′′ = g + (g′ + g′′) for
all g, g′, g′′ ∈ G.

If the group also satisfies the condition

G4 g + g′ = g′ + g for all g, g′ ∈ G;

then we say that G is commutative (abelian).
The set N of natural numbers is not a group with respect to +: there is a

composition + : N× N −→ N, but the element 1 ∈ N has no inverse. In fact, if
n+1 = 0 were solvable in N, then 0 would be the successor of n in contradiction
to Peano’s axiom N3.

The set Z of integers, on the other hand, is a group with respect to +. In
fact, Z is not only a group, it also carries the structure of a ring. But in order
to see this, we have to define multiplication in Z first.
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2.3 Multiplication

In order to define multiplication on Z, let us think of [r, s] as the ‘integer’ r− s;
then we want [r, s]� [t, u] ' (r−s)(t−u) = rt+su−ru−st ' [rt+su, ru+st],
and this suggests the definition

[r, s]� [t, u] = [rt + su, ru + st]. (2.4)

Once more we have to show that the multiplication (2.4) is well defined and
that it agrees with multiplication in N (actually we have defined it in such a way
that it must; what we have to check here is that ι(m) � ι(n) = ι(mn)). Then
one generalizes distributivity, commutativity, associativity and the cancellation
law to integers in Z.

Let us just note in passing that

(−1) · (−1) = [0, 1]� [0, 1] by our identification
= [1, 0] by (2.4)
= +1 since ι(1) = [2, 1]

More generally, for m,n ∈ Z we now can prove that

(−m) · n = −mn,

m · (−n) = −mn,

(−m) · (−n) = mn.

Thus the rules for multiplying signs come out naturally from our definition of
multiplication on Z.

Now we are ready to state that Z is a ring. A ring R is a set on which two
kinds of compositions are defined; they are usually denoted by + (addition) and ·
(multiplication). Of course, these compositions are to satisfy certain conditions;
first of all, r+s and r·s should be elements of R whenever r and s are. Moreover,
we demand

R1 R is an abelian group with respect to +;

R2 (associativity): r(st) = (rs)t for r, s, t ∈ R;

R3 (distributivity): we have r(s + t) = rs + rt and (r + s)t = rt + st for
r, s, t ∈ R.

R4 R contains a unit element e 6= 0 satisfying er = re = r for all r ∈ R;

The element e in R4 is usually denoted by 1. Note that every ring has at least
two elements since 1 6= 0 by R4.

If R also satisfies rs = sr for all r, s ∈ R, then we say that R is commutative.
Finally, a ring R is called an integral domain if xy = 0 implies x = 0 or y = 0.

In any ring we have 0x = 0: in fact,

0x = (0 + 0)x since 0 neutral element of +
= 0x + 0x by distributivity,

so substracting 0x from both sides gives 0 = 0x.
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Theorem 2.2. The integers Z form a commutative integral domain with respect
to addition and multiplication.

Let us prove that Z is indeed an integral domain.
Assume that xy = 0 for x, y ∈ Z. Write x = [r, s] and y = [t, u]. Then

[0, 0] = 0 = xy = [r, s]� [t, u] = [rt+su, ru+st] by assumption, hence rt+su =
ru + st.

Now assume that x 6= 0; then r + m = s or r = s + m for some m ∈ N by
the Trichotomy Law for Addition. In the first case, r + m = s for some m ∈ N.
Then rt + (r + m)u = rt + su = ru + st = ru + (r + m)t, hence mu = mt and
so u = t, that is, y = 0. The case r > s is treated similarly.

2.4 Z as an ordered domain

Last not least we have to extend the relation < to Z. We put

[r, s] < [t, u] if r + u < t + s. (2.5)

This is well defined and agrees with the ordering on N.
For showing that the relation is well defined, we have to assume that (r, s) ∼

(r′, s′) and (t, u) ∼ (t′, u′), and then show that r+u < t+s implies r′+u′ < t′+s′.
For showing that the order just defined agrees with the one we know from

N we have to prove that n < m if and only if ι(n) < ι(m).

Proposition 2.3. The set Z is simply ordered with respect to <.

An ordered domain is a domain R together with an order < such that
OD1 R is simply ordered with respect to <.
OD2 If x < y, then x + z < y + z for x, y, z ∈ R.
OD3 If x < y and 0 < z, then xz < yz.

Proposition 2.4. Z is an ordered domain with respect to <.

Proof. Write x = [r, s] and y = [t, u]. If z ∈ N, then we may put z = [v, 0]. By
definition, x < y means r + u < t + s, and xz < yz is equivalent to (r + u)v <
(t + s)v. Since v ∈ N, this is clear.

The rest is left as an exercise.

Proposition 2.5. In any ordered domain R, the following assertions are true:

1. If x < 0, then −x > 0.

2. If x < y and z < 0, then xz > yz.

3. We have x2 ≥ 0 for all x ∈ R, with equality if and only if x = 0.

Proof. 1. If x < 0, then x + (−x) < 0 + (−x) by OD2, and so 0 < −x.

2. We have 0 < −z, hence −xz = x · (−x) < y · (−z) = −yz, hence xz > yz.
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3. If x ≥ 0, then multiplying through by x ≥ 0 gives x2 ≥= 0; if x ≤ 0, then
multiplying through by x ≤ 0 gives x2 ≥ 0.

We now introduce absolute values in any ordered domain by putting

|x| =

{
x if x ≥ 0,

−x if x < 0.

Here are a few simple properties of absolute values:

Lemma 2.6. In any ordered domain R, the absolute value | · | has the following
properties.

1. |x| ≥ 0.

2. |xy| = |x| · |y|.

3. If s ≥ 0 and −s ≤ r ≤ s, then |r| ≤ s.

Proof. 1. is clear if x ≥ 0; if x < 0, multiply through by −1 < 0.
2. Just consider the four possible cases: a) if x > 0, y > 0, then xy > 0, so

the claim is xy = xy, which obviously holds; b) if x > 0 and y < 0, then xy < 0,
hence the claim is −xy = x · (−y). The other two cases are treated similarly.

3. In fact, it is sufficient to prove that r ≤ s and −r ≤ s. The first one is
true by assumption, the second one follows from multiplying −s ≤ r through
by −1.

The following inequality is important:

Proposition 2.7 (Triangle Inequality). For all x, y in an ordered domain, we
have |x + y| ≤ |x|+ |y|.

Proof. By adding −|x| ≤ x ≤ |x| and −|y| ≤ y ≤ |y| we obtain −(|x| + |y|) ≤
x + y ≤ |x|+ |y|. Now apply Lemma 2.6.3 to r = x + y and s = |x|+ |y|.

Division with Remainder

The following property of the integers is the basis for the arithmetic of Z:

Theorem 2.8. For every pair a, b ∈ Z with b > 0, there exist unique integers
q, r ∈ Z such that a = bq + r and 0 ≤ r < b.

Proof. The proof that q and r are unique is the same as in the proof of the
analogous result in N. This result also takes care of the existence of q and r if
a ≥ 0. Assume therefore that a < 0; then there exist q′, r′ such that −a = bq′+r′

with 0 ≤ r′ < b. Thus a = b(−q′) + (−r′), and we may take q = −q′, r = −r′ if
r′ = 0, and q = −q′ − 1 and r = −r′ + b if r′ < 0.
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2.5 Historical Remarks

Already Diophantus had discovered rules like (a− b)(c− d) = ac− bc− ad + bd
for positive rational numbers a > b and c > d, but his books do not contain any
negative numbers. Negative numbers were, just as 0, invented by the Hindus
(around 600 AD or earlier) and the Chinese (before 1100 AD). Although their
positional system found its way into the Arabic world, negative numbers did
not: they were not accepted as valid solutions by the Arabs. Leonardo di Pisa
(also known by his nickname Fibonacci, which he was given by a mathematician
of the 19th century, and which stuck), son of a merchant travelling around the
Mediterranean, made Arabic numbers known in Europe; his books even contain
some negative numbers (which are interpreted as debt), but they were not ac-
cepted as useful. Thus when Italian mathematicians discovered the solution of
the cubic, they treated x3 + 3x + 1 = and x3 + 3x = 1 etc. as being different
kind of cubics, and therefore had to distinguish a lot of cases. After Fermat and
Descartes had started analytic geometry, negative numbers became ‘visible’ as
solutions e.g. to quadratic equations that simply were to the left of the y-axis,
yet negative solutions were called ‘false solutions’. Newton was one of the first
who used negative numbers freely in analytic geometry.

Here are some bits and pieces from the history of negative numbers:

• Nicolas Chuquet (1445–1488) wrote Triparty en la science des nombres, in
which he worked with equations having negative numbers as coefficients;
this book was, however, lost for a long time and was published only in
1880.

• Michael Stifel’s (1487–1567) book arithmetica integra explains how to work
with negative numbers, which he calls ‘numeri absurdi’ or ‘numeri ficti
infra nihil’.

• Cardano allows negative numbers as solutions if they can be interpreted
as debt. In his theory of cubics, he does not allow negative coefficients.

• Simon Stevin (1548–1620) accepts negative numbers.

• René Descartes (1596–1650) called negative solutions of polynomial equa-
tions false roots.

• Thomas Harriot (1560–1621) claimed that equations do not have nega-
tive solutions; rather the negative solutions of f(x) = 0 are the positive
solutions of f(−x) = 0.

• John Wallis claimed that negatives do not exist, but that they are useful
to work with.

• Leibniz stumbled over the following problem in 1712: he observed that
1
−1 = −1

1 and claimed that this shows that −1 < 0 is false; otherwise the
numerator on the left is bigger than the denominator, on the right it’s the
other way round, yet the two fractions are equal.
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• Auguste de Morgan in 1831:

It is astonishing that the human intellect should ever have tol-
erated such an absurdity as the idea of a quantity less than
nothing, above all, that the notion should have outlived the be-
lief in judicial astronomy and the existence of witches, either of
which is ten thousand times more probable.

Here’s another one:

The imaginary expression
√
−a and the negative expression −b,

have this resemblance, that either of them occurring as the so-
lution of a problem indicates some inconsistency or absurdity.
As far as real meaning is concerned, both are imaginary, since
0− a is as inconceivable as

√
−a.

His father-in-law William Frend had this to say about negative numbers
in 1796:

(A number) submits to be taken away from a number greater
than itself, but to take it away from a number less than itself
is ridiculous. Yet this is attempted by algebraists who talk of
a number less than nothing; of multiplying a negative number
into a negative number and thus producing a positive number;
of a number being imaginary. . . . This is all jargon, at which
common sense recoils; but, from its having been once adopted,
like many other figments, it finds the most strenuous supporters
among those who love to take things upon trust and hate the
colour of serious thought.

Exercises

2.1 Show that [r, s] ∗ [t, u] = [rt, su] is not well defined on Z.

2.2 Prove the following rules for n, m ∈ Z:

1. −(n + m) = −n−m;

2. −(n−m) = m− n;

3. −(−n) = n.

2.3 Show that if a < b and c < d, then a + c < b + d.
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