
Chapter 14

p-adic numbers

At the end of the 19th century, Hensel invented p-adic numbers as a number
theoretical analogue of power series in complex analysis. It took more than
25 years before p-adic numbers were taken seriously by number theorists: this
was when Hasse, around 1920, proved the Local-Global Principle for quadratic
forms over Q: a quadratic form in n variables with rational constants represents
0 nontrivially if and only if the quadratic form represents 0 nontrivially in each
p-adic completion of Q. The point is that checking representability in p-adic
fields is something that can be done easily, and in a finite number of steps.

So what are p-adic numbers? Actually there are several ways of introducing
them.

The Naive Approach

Let us solve the congruences x2 ≡ −1 mod 5n for n ≥ 1.
For n = 1 there are two solutions: x ≡ ±2 mod 3. In order to find a

solution for n = 2, note that if x2 ≡ −1 mod 52, then x2 ≡ −1 mod 5 and
therefore x ≡ ±2 mod 5. Thus we can try to find x by writing x = 2 + 5y; then
0 ≡ x2 + 1 ≡ 5 + 20y mod 52, hence 52 | (5 + 20y) or 5 | (1 + 4y). This yields
y ≡ 1 mod 5, and our solution is x ≡ 2 + 5 mod 52.

Now assume that we have determined x ∈ N with x2 ≡ −1 mod 5n; in order
to find a solution modulo 5n+1, write a = x + 5ny. From x2 ≡ −1 mod 5n we
get x2 + 1 = 5nb. Thus 0 ≡ a2 + 1 ≡ x2 + 1 + 2xy5n ≡ 5n(b+ 2xy) mod 5n+1.
This implies b + 2xy ≡ 0 mod 5, and since 5 - 2x, this congruence must have a
unique solution modulo 5.

Thus we have proved: there exist integers xk with 0 ≤ xk < 5 such that
for every n ≥ 1 the integer Xn = x0 + 5x1 + 52x2 + . . . + 5n−1xn−1 solves the
congruence X2

n ≡ −1 mod 5n.
Of course the sequence (Xn) does not converge, so it does not seem to make

sense of defining
x = x0 + 5x1 + 52x2 + . . .
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Yet this is exactly what Hensel did. Such an expression is called a 5-adic integers,
and the set of all 5-adic integers forms a ring.

In fact, fix a prime number p and consider formal power series in p:

a = a0 + a1p+ a2p
2 + . . . , (14.1)

where 0 ≤ ai ≤ p− 1. The key word here is formal, that is, you negelct things
like convergence. Now you can clearly add, subtract and multiply such power
series; for example, let us add the 5-adic numbers

3 + 2 · 5 + 0 · 52 + 4 · 53 + . . .
1 + 4 · 5 + 2 · 52 + 2 · 53 + . . .
4 + 6 · 5 + 2 · 52 + 6 · 53 + . . . .

Now observe that 6 = 1+5, hence 6 · 5 = 1 · 5+1 · 52, hence we carry 1 and find

4 + 6 · 5 + 2 · 52 + 6 · 53 + . . . = 4 + 1 · 5 + 3 · 52 + 1 · 53 + . . . ,

where we have carried another 1 at the coefficient of 53. Clearly we can also
multiply p-adic numbers this way, so we get a ring Zp, the ring of p-adic integers,
whose neutral element is 0 = 0 + 0 · p + 0 · p2 + . . . and whose unit element is
1 = 1 + 0 · p+ 0 · p2 + . . .. Note that Zp contains Z as a subring: every natural
number a actually has a finite expansion into a p-adic series. What about −1?.
Well,

−1 = p− 1− 1 · p
= p− 1 + (p− 1) · p− p2

= p− 1 + (p− 1) · p+ (p− 1) · p2 − p3

= . . .

= p− 1 + (p− 1) · p+ (p− 1) · p2 + (p− 1) · p3 + . . .

Actually, this is not too surprising: consider the geometric series 1
1−x = 1+x+

x2 + . . . and plug in p: then 1
1−p = 1 + p+ p2 + . . ., and multiplying through by

p− 1 gives you the p-adic expansion of −1 above. Actually, the “equation”

−1 = 1 + 2 + 4 + 8 + . . .

can be found in Euler’s work (where, of course, it didn’t make too much sense).
Let us now become familiar with the p-adic numbers by proving a few simple

results.

Lemma 14.1. Z is a subring of Zp.

Proof. Every positive integer n can be written as a “finite” p-adic number:
n = a0 + a1p+ . . .+ amp

m. In fact, define a0 by 0 ≤ a0 < p and n ≡ a0 mod p;
then let n1 = (n− a0)/p and define a1 by 0 ≤ a1 < p and n1 ≡ a1 mod p; now
repeat until nm = 0.

Next, −1 = (p− 1)(1 + p+ p2 + . . .) ∈ Zp; thus every integer is also a p-adic
integer.
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Lemma 14.2. The prime p ∈ Z is also prime in Zp.

Proof. Assume that a, b ∈ Zp and that p | ab. Write a = a0+a1p+a2p
2+. . . and

b = b0+b1p+b2p2+. . . with 0 ≤ ai, bi < p. Then ab = a0b0+p(a0b1+a1b0)+. . . is
divisible by p; this implies that p | a0b0 in the usual integers, and since p is prime
there, we have p | a0 or p | b0. Because of 0 ≤ ai, bi < p this is only possible if
a0 = 0 or b0 = 0, and then a = p(a1 + a2p + . . .) or b = p(b1 + b2p + . . .), i.e.,
p | a or p | b.

Next we claim that p is the only prime in Zp:

Lemma 14.3. Assume that a ∈ Zp is not divisible by p. Then a is a unit.

Proof. Write a = a0+a1p+a2p
2+. . . with 0 ≤ ai < p. Then p - a means a0 6= 0,

i.e., 1 ≤ a0 ≤ p− 1. We now construct a p-adic integer b = b0 + b1p+ b2p
2 + . . .

with ab = 1. We must have 1 = ab ≡ a0b0 mod p, and there is a unique b0 with
1 ≤ b0 ≤ p− 1 and a0b0 ≡ 1 mod p.

Next we find 1 = ab ≡ a0b0 + p(a1b0 + a0b1) mod p2. Since a0b0 ≡ 1 mod p
we have a0b0 − 1 = pc0, and now 0 ≡ pc0 + p(a1b0 + a0b1) mod p2. This is
equivalent to a1b0 + a0b1 + c0 ≡ 0 mod p, which is a linear congruence in b1
(all the other numbers in there are known); since a0b1 ≡ −c0 − a1b0 mod p
has a unique solution (again because p - a0), we have found a unique b1 with
1 ≤ b1 ≤ p− 1.

Now we proceed by induction and show that, once we have constructed b0,
. . . , bn, we can determine bn+1 from a linear congruence a0bn+1 ≡ something
modp. This is left as an exercise.

Now put b = b0+b1p+. . .. Then ab ≡ 1 mod pn for every n, hence pn | (ab−1)
for every n, and this is only possible if ab = 1.

Lemma 14.4. Every nonzero p-adic integer can be written uniquely in the form
a = pnu for some integer n ≥ 0 and some unit u ∈ Zp.

Proof. Write a = a0 + a1p+ a2p
2 + . . . with 0 ≤ ai < p. Let n be the smallest

exponent for which an is nonzero. Then a = anp
n + an+1p

n+1 + . . . = pn(an +
an+1p+ . . .), and since p - an, the p-adic number in the brackets is a unit.

Lemma 14.5. Zp is a domain.

Proof. In fact, assume that ab = 0 for a, b ∈ Zp. If a and b are nonzero, then
we can write a = pmu and b = pnv for units u, v; but then uv is a unit, hence
nonzero, and then ab = pm+nuv is nonzero too.

We now introduce the field Qp of p-adic numbers. It consists of quotients a
b

with a, b ∈ Zp and b 6= 0. Writing a = pmu and b = pnv for units u, v we see
that a

b = pm−nuv−1. Thus p-adic numbers are just a power of p (possibly with
negativ exponent) times a unit in Zp.
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14.1 Valuations

The usual absolute value in the rational or real numbers has the following prop-
erty:

• |x| ≥ 0 for x ∈ Q; |x| = 0 if and only if x = 0;

• |xy| = |x| · |y|;

• |x+ y| ≤ |x|+ |y| (triangle inequality).

It turns out that there are more functions with these properties. Let p > 0
be a prime number; any a ∈ Q× can be written uniquely as a = pmb, where
b = r

s is a fraction whose numerator and denominator are not divisible by p:
p - rs. Now put |a|p = p−m and |0|p = 0. This function | · |p has the following
properties:

• |a|p ≥ 0 and |a|p = 0 if and only if a = 0;

• |ab|p = |a|p|b|p. In fact, write a = pm r
s and b = pn t

u , where p - rstu. Then
ab = pm+n rt

su , hence |ab|p = p−m−n = |a|p|b|p.

• |a+b|p ≤ |a|p+|b|p. In fact, we will prove the stronger statement |a+b|p ≤
max{|a|p, |b|p}. Write a = pm r

s and b = pn t
u , where p - rstu, and assume

that m ≤ n. (hence |a|p ≥ |b|p). Then a + b = pm( r
s + pn−m t

u ) =
pm(ru + pn−mst)/su, and therefore |a + b|p = |a|p|ru + pn−mst|p|tu|−1

p .
Now |tu|p = 1 since p - tu, and |ru+ pn−mst|p ≤ 1 because |c| ≤ 1 for any
integer c, hence |a+ b|p ≤ |a|p = max{|a|p, |b|p} as claimed.

Using these valuations | · |p instead of the usual absolute value (which we
will often denote by | · |∞ from now on) we can define Cauchy sequence and the
notion of a limit. We say that a sequence (an) of rational numbers is Cauchy if
for every ε > 0 there is an N such that |am − an|p < ε for all m,n > N ; we say
it converges to a ∈ Q if for every ε > 0 there is an N such that |an − a|p < ε
for all n > N .

Cauchy sequences and converging sequences with respect to | · |p form rings.
The set N of null sequences (sequences converging to 0) actually is an ideal in
the ring C of Cauchy sequences, and the quotient ring C/N (residue classes of
Cauchy sequences modulo null sequences) turns out to be a field, namely the
field of p-adic numbers Qp. The reals can be constructed in the same way using
the usual absolute value, and we often write R = Q∞.

These new fields have strange properties. For example, the sequence an = pn

is a null sequence with respect to | · |p. Moreover, limn(1 + p+ . . .+ pn) = 1
1−p

with respect to | · |p. In fact,

1 + p+ . . .+ pn − 1
1− p

=
1− pn+1

1− p
− 1

1− p
=

pn

p− 1
,

hence |1 + p+ . . .+ pn − 1
1−p |p = p−n. This clearly can be made as small as we

wish.
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We can extend the valuation | · |p defind on Q to a valuation on Qp by
writing x = pmu for some unit u ∈ Z×p and putting |x|p = p−m.

Let us now return to the sequence Xn with X2
n ≡ −1 mod 5n defined above.

The sequence Xn clearly is Cauchy, so its limit must be a 5-adic number. We
claim that X = limXn satisfies X2 = −1. Given ε > 0 we can choose n
so large that |X − Xn|p < ε. Then |X2 + 1|p = |X2 − X2

n|p + |X2
n + 1|p =

|X −Xn|p|X −Xn|p + |X2
n +1|p ≤ ε+ p−n−1 since X2

n ≡ −1 mod pn+1. Clearly
ε+ p−n−1 can be made as small as we wish, hence X2 + 1 = 0.
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