Chapter 14

p-adic numbers

At the end of the 19th century, Hensel invented p-adic numbers as a number theoretical analogue of power series in complex analysis. It took more than 25 years before p-adic numbers were taken seriously by number theorists: this was when Hasse, around 1920, proved the Local-Global Principle for quadratic forms over \mathbb{Q} : a quadratic form in n variables with rational constants represents 0 nontrivially if and only if the quadratic form represents 0 nontrivially in each p-adic completion of \mathbb{Q} . The point is that checking representability in p-adic fields is something that can be done easily, and in a finite number of steps.

So what are p-adic numbers? Actually there are several ways of introducing them.

The Naive Approach

Let us solve the congruences $x^2 \equiv -1 \mod 5^n$ for $n \ge 1$.

For n = 1 there are two solutions: $x \equiv \pm 2 \mod 3$. In order to find a solution for n = 2, note that if $x^2 \equiv -1 \mod 5^2$, then $x^2 \equiv -1 \mod 5$ and therefore $x \equiv \pm 2 \mod 5$. Thus we can try to find x by writing x = 2 + 5y; then $0 \equiv x^2 + 1 \equiv 5 + 20y \mod 5^2$, hence $5^2 \mid (5 + 20y)$ or $5 \mid (1 + 4y)$. This yields $y \equiv 1 \mod 5$, and our solution is $x \equiv 2 + 5 \mod 5^2$.

Now assume that we have determined $x \in \mathbb{N}$ with $x^2 \equiv -1 \mod 5^n$; in order to find a solution modulo 5^{n+1} , write $a = x + 5^n y$. From $x^2 \equiv -1 \mod 5^n$ we get $x^2 + 1 = 5^n b$. Thus $0 \equiv a^2 + 1 \equiv x^2 + 1 + 2xy5^n \equiv 5^n(b + 2xy) \mod 5^{n+1}$. This implies $b + 2xy \equiv 0 \mod 5$, and since $5 \nmid 2x$, this congruence must have a unique solution modulo 5.

Thus we have proved: there exist integers x_k with $0 \le x_k < 5$ such that for every $n \ge 1$ the integer $X_n = x_0 + 5x_1 + 5^2x_2 + \ldots + 5^{n-1}x_{n-1}$ solves the congruence $X_n^2 \equiv -1 \mod 5^n$.

Of course the sequence (X_n) does not converge, so it does not seem to make sense of defining

$$x = x_0 + 5x_1 + 5^2 x_2 + \dots$$

Yet this is exactly what Hensel did. Such an expression is called a 5-adic integers, and the set of all 5-adic integers forms a ring.

In fact, fix a prime number p and consider formal power series in p:

$$a = a_0 + a_1 p + a_2 p^2 + \dots, (14.1)$$

where $0 \le a_i \le p-1$. The key word here is *formal*, that is, you neglect things like convergence. Now you can clearly add, subtract and multiply such power series; for example, let us add the 5-adic numbers

Now observe that 6 = 1 + 5, hence $6 \cdot 5 = 1 \cdot 5 + 1 \cdot 5^2$, hence we carry 1 and find

$$4 + 6 \cdot 5 + 2 \cdot 5^{2} + 6 \cdot 5^{3} + \ldots = 4 + 1 \cdot 5 + 3 \cdot 5^{2} + 1 \cdot 5^{3} + \ldots,$$

where we have carried another 1 at the coefficient of 5^3 . Clearly we can also multiply *p*-adic numbers this way, so we get a ring \mathbb{Z}_p , the ring of *p*-adic integers, whose neutral element is $0 = 0 + 0 \cdot p + 0 \cdot p^2 + \ldots$ and whose unit element is $1 = 1 + 0 \cdot p + 0 \cdot p^2 + \ldots$ Note that \mathbb{Z}_p contains \mathbb{Z} as a subring: every natural number *a* actually has a *finite* expansion into a *p*-adic series. What about -1?. Well,

$$\begin{aligned} -1 &= p - 1 - 1 \cdot p \\ &= p - 1 + (p - 1) \cdot p - p^2 \\ &= p - 1 + (p - 1) \cdot p + (p - 1) \cdot p^2 - p^3 \\ &= \dots \\ &= p - 1 + (p - 1) \cdot p + (p - 1) \cdot p^2 + (p - 1) \cdot p^3 + \dots \end{aligned}$$

Actually, this is not too surprising: consider the geometric series $\frac{1}{1-x} = 1 + x + x^2 + \ldots$ and plug in p: then $\frac{1}{1-p} = 1 + p + p^2 + \ldots$, and multiplying through by p-1 gives you the *p*-adic expansion of -1 above. Actually, the "equation"

$$-1 = 1 + 2 + 4 + 8 + \dots$$

can be found in Euler's work (where, of course, it didn't make too much sense).

Let us now become familiar with the p-adic numbers by proving a few simple results.

Lemma 14.1. \mathbb{Z} is a subring of \mathbb{Z}_p .

Proof. Every positive integer n can be written as a "finite" p-adic number: $n = a_0 + a_1 p + \ldots + a_m p^m$. In fact, define a_0 by $0 \le a_0 < p$ and $n \equiv a_0 \mod p$; then let $n_1 = (n - a_0)/p$ and define a_1 by $0 \le a_1 < p$ and $n_1 \equiv a_1 \mod p$; now repeat until $n_m = 0$.

Next, $-1 = (p-1)(1+p+p^2+\ldots) \in \mathbb{Z}_p$; thus every integer is also a *p*-adic integer.

Lemma 14.2. The prime $p \in \mathbb{Z}$ is also prime in \mathbb{Z}_p .

Proof. Assume that $a, b \in \mathbb{Z}_p$ and that $p \mid ab$. Write $a = a_0 + a_1p + a_2p^2 + \ldots$ and $b = b_0 + b_1p + b_2p^2 + \ldots$ with $0 \le a_i, b_i < p$. Then $ab = a_0b_0 + p(a_0b_1 + a_1b_0) + \ldots$ is divisible by p; this implies that $p \mid a_0b_0$ in the usual integers, and since p is prime there, we have $p \mid a_0$ or $p \mid b_0$. Because of $0 \le a_i, b_i < p$ this is only possible if $a_0 = 0$ or $b_0 = 0$, and then $a = p(a_1 + a_2p + \ldots)$ or $b = p(b_1 + b_2p + \ldots)$, i.e., $p \mid a$ or $p \mid b$.

Next we claim that p is the only prime in \mathbb{Z}_p :

Lemma 14.3. Assume that $a \in \mathbb{Z}_p$ is not divisible by p. Then a is a unit.

Proof. Write $a = a_0 + a_1 p + a_2 p^2 + ...$ with $0 \le a_i < p$. Then $p \nmid a$ means $a_0 \ne 0$, i.e., $1 \le a_0 \le p - 1$. We now construct a *p*-adic integer $b = b_0 + b_1 p + b_2 p^2 + ...$ with ab = 1. We must have $1 = ab \equiv a_0 b_0 \mod p$, and there is a unique b_0 with $1 \le b_0 \le p - 1$ and $a_0 b_0 \equiv 1 \mod p$.

Next we find $1 = ab \equiv a_0b_0 + p(a_1b_0 + a_0b_1) \mod p^2$. Since $a_0b_0 \equiv 1 \mod p$ we have $a_0b_0 - 1 = pc_0$, and now $0 \equiv pc_0 + p(a_1b_0 + a_0b_1) \mod p^2$. This is equivalent to $a_1b_0 + a_0b_1 + c_0 \equiv 0 \mod p$, which is a linear congruence in b_1 (all the other numbers in there are known); since $a_0b_1 \equiv -c_0 - a_1b_0 \mod p$ has a unique solution (again because $p \nmid a_0$), we have found a unique b_1 with $1 \leq b_1 \leq p-1$.

Now we proceed by induction and show that, once we have constructed b_0 , ..., b_n , we can determine b_{n+1} from a linear congruence $a_0b_{n+1} \equiv$ something mod p. This is left as an exercise.

Now put $b = b_0 + b_1 p + \ldots$ Then $ab \equiv 1 \mod p^n$ for every n, hence $p^n \mid (ab-1)$ for every n, and this is only possible if ab = 1.

Lemma 14.4. Every nonzero p-adic integer can be written uniquely in the form $a = p^n u$ for some integer $n \ge 0$ and some unit $u \in \mathbb{Z}_p$.

Proof. Write $a = a_0 + a_1p + a_2p^2 + \ldots$ with $0 \le a_i < p$. Let *n* be the smallest exponent for which a_n is nonzero. Then $a = a_np^n + a_{n+1}p^{n+1} + \ldots = p^n(a_n + a_{n+1}p + \ldots)$, and since $p \nmid a_n$, the *p*-adic number in the brackets is a unit. \Box

Lemma 14.5. \mathbb{Z}_p is a domain.

Proof. In fact, assume that ab = 0 for $a, b \in \mathbb{Z}_p$. If a and b are nonzero, then we can write $a = p^m u$ and $b = p^n v$ for units u, v; but then uv is a unit, hence nonzero, and then $ab = p^{m+n}uv$ is nonzero too.

We now introduce the field \mathbb{Q}_p of *p*-adic numbers. It consists of quotients $\frac{a}{b}$ with $a, b \in \mathbb{Z}_p$ and $b \neq 0$. Writing $a = p^m u$ and $b = p^n v$ for units u, v we see that $\frac{a}{b} = p^{m-n}uv^{-1}$. Thus *p*-adic numbers are just a power of *p* (possibly with negative exponent) times a unit in \mathbb{Z}_p .

14.1 Valuations

The usual absolute value in the rational or real numbers has the following property:

- $|x| \ge 0$ for $x \in \mathbb{Q}$; |x| = 0 if and only if x = 0;
- $|xy| = |x| \cdot |y|;$
- $|x+y| \le |x| + |y|$ (triangle inequality).

It turns out that there are more functions with these properties. Let p > 0 be a prime number; any $a \in \mathbb{Q}^{\times}$ can be written uniquely as $a = p^{m}b$, where $b = \frac{r}{s}$ is a fraction whose numerator and denominator are not divisible by p: $p \nmid rs$. Now put $|a|_{p} = p^{-m}$ and $|0|_{p} = 0$. This function $|\cdot|_{p}$ has the following properties:

- $|a|_p \ge 0$ and $|a|_p = 0$ if and only if a = 0;
- $|ab|_p = |a|_p |b|_p$. In fact, write $a = p^m \frac{r}{s}$ and $b = p^n \frac{t}{u}$, where $p \nmid rstu$. Then $ab = p^{m+n} \frac{rt}{su}$, hence $|ab|_p = p^{-m-n} = |a|_p |b|_p$.
- $|a+b|_p \leq |a|_p+|b|_p$. In fact, we will prove the stronger statement $|a+b|_p \leq \max\{|a|_p, |b|_p\}$. Write $a = p^m \frac{r}{s}$ and $b = p^n \frac{t}{u}$, where $p \nmid rstu$, and assume that $m \leq n$. (hence $|a|_p \geq |b|_p$). Then $a+b = p^m(\frac{r}{s}+p^{n-m}\frac{t}{u}) = p^m(ru+p^{n-m}st)/su$, and therefore $|a+b|_p = |a|_p|ru+p^{n-m}st|_p|tu|_p^{-1}$. Now $|tu|_p = 1$ since $p \nmid tu$, and $|ru+p^{n-m}st|_p \leq 1$ because $|c| \leq 1$ for any integer c, hence $|a+b|_p \leq |a|_p = \max\{|a|_p, |b|_p\}$ as claimed.

Using these valuations $|\cdot|_p$ instead of the usual absolute value (which we will often denote by $|\cdot|_{\infty}$ from now on) we can define Cauchy sequence and the notion of a limit. We say that a sequence (a_n) of rational numbers is Cauchy if for every $\varepsilon > 0$ there is an N such that $|a_m - a_n|_p < \varepsilon$ for all m, n > N; we say it converges to $a \in \mathbb{Q}$ if for every $\varepsilon > 0$ there is an N such that $|a_n - a_n|_p < \varepsilon$ for all n > N.

Cauchy sequences and converging sequences with respect to $|\cdot|_p$ form rings. The set \mathcal{N} of null sequences (sequences converging to 0) actually is an ideal in the ring \mathcal{C} of Cauchy sequences, and the quotient ring \mathcal{C}/\mathcal{N} (residue classes of Cauchy sequences modulo null sequences) turns out to be a field, namely the field of *p*-adic numbers \mathbb{Q}_p . The reals can be constructed in the same way using the usual absolute value, and we often write $\mathbb{R} = \mathbb{Q}_{\infty}$.

These new fields have strange properties. For example, the sequence $a_n = p^n$ is a null sequence with respect to $|\cdot|_p$. Moreover, $\lim_n (1+p+\ldots+p^n) = \frac{1}{1-p}$ with respect to $|\cdot|_p$. In fact,

$$1 + p + \ldots + p^{n} - \frac{1}{1 - p} = \frac{1 - p^{n+1}}{1 - p} - \frac{1}{1 - p} = \frac{p^{n}}{p - 1},$$

hence $|1 + p + \ldots + p^n - \frac{1}{1-p}|_p = p^{-n}$. This clearly can be made as small as we wish.

We can extend the valuation $|\cdot|_p$ defind on \mathbb{Q} to a valuation on \mathbb{Q}_p by writing $x = p^m u$ for some unit $u \in \mathbb{Z}_p^{\times}$ and putting $|x|_p = p^{-m}$. Let us now return to the sequence X_n with $X_n^2 \equiv -1 \mod 5^n$ defined above. The sequence X_n clearly is Cauchy, so its limit must be a 5-adic number. We claim that $X = \lim X_n$ satisfies $X^2 = -1$. Given $\varepsilon > 0$ we can choose n so large that $|X - X_n|_p < \varepsilon$. Then $|X^2 + 1|_p = |X^2 - X_n^2|_p + |X_n^2 + 1|_p = |X - X_n|_p |X - X_n|_p + |X_n^2 + 1|_p \le \varepsilon + p^{-n-1}$ since $X_n^2 \equiv -1 \mod p^{n+1}$. Clearly $\varepsilon + p^{-n-1}$ can be made as small as we wish, hence $X^2 + 1 = 0$.