Chapter 14

p-adic numbers

At the end of the 19th century, Hensel invented p-adic numbers as a number
theoretical analogue of power series in complex analysis. It took more than
25 years before p-adic numbers were taken seriously by number theorists: this
was when Hasse, around 1920, proved the Local-Global Principle for quadratic
forms over Q: a quadratic form in n variables with rational constants represents
0 nontrivially if and only if the quadratic form represents 0 nontrivially in each
p-adic completion of Q. The point is that checking representability in p-adic
fields is something that can be done easily, and in a finite number of steps.

So what are p-adic numbers? Actually there are several ways of introducing
them.

The Naive Approach

Let us solve the congruences 22 = —1 mod 5" for n > 1.
For n = 1 there are two solutions: x = +2 mod 3. In order to find a
solution for n = 2, note that if > = —1 mod 52, then 22 = —1 mod 5 and

therefore x = +2 mod 5. Thus we can try to find x by writing x = 2 4 5y; then
0 =22+ 1=5+ 20y mod 52, hence 52 | (5 +20y) or 5| (1 + 4y). This yields
y = 1 mod 5, and our solution is z = 2 + 5 mod 52.

Now assume that we have determined = € N with 22 = —1 mod 5”; in order
to find a solution modulo 5**!, write a = z + 5"y. From 22 = —1 mod 5" we
get 22 +1=5". Thus 0 = a? + 1 =22 + 1 + 22y5" = 5" (b + 2xy) mod 571,
This implies b + 22y = 0 mod 5, and since 5 1 2z, this congruence must have a
unique solution modulo 5.

Thus we have proved: there exist integers z; with 0 < z; < 5 such that
for every n > 1 the integer X,, = xo + 51 + 5%x9 + ... + 5" 'z, _; solves the
congruence X2 = —1 mod 5.

Of course the sequence (X,,) does not converge, so it does not seem to make
sense of defining

x:w0+5x1+52m2+...
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Yet this is exactly what Hensel did. Such an expression is called a 5-adic integers,
and the set of all 5-adic integers forms a ring.
In fact, fix a prime number p and consider formal power series in p:

a=ag+ap+ap’+..., (14.1)

where 0 < a; < p— 1. The key word here is formal, that is, you negelct things
like convergence. Now you can clearly add, subtract and multiply such power
series; for example, let us add the 5-adic numbers

3 + 25 4+ 0-5%2 4+ 4.5 +...

1 + 45 + 2-52 4+ 2.5 ...
4 + 65 + 2-52 4+ 6-5°5 +....

Now observe that 6 = 145, hence 6-5 = 1-5+41-52, hence we carry 1 and find
446-54+2-5246-54+...=4+1-5+3-52+1-55+ ...,

where we have carried another 1 at the coefficient of 5%. Clearly we can also
multiply p-adic numbers this way, so we get a ring Z,,, the ring of p-adic integers,
whose neutral element is 0 = 0+ 0-p+ 0-p? + ... and whose unit element is
1=1+0-p+0-p*+.... Note that Z,, contains Z as a subring: every natural
number a actually has a finite expansion into a p-adic series. What about —17.
Well,

—1=p—-1—-1-p
=p—1+(@—-1)-p—p
=p-1+(p-1)-p+(p-1)-p"-p°

2

=p=14+@@-1)p+(-1D-P+@-1)-p*+...

Actually, this is not too surprising: consider the geometric series ﬁ =14z+

22+ ... and plug in p: then ﬁ =1+4+p+p®+..., and multiplying through by
p — 1 gives you the p-adic expansion of —1 above. Actually, the “equation”

—1=1+24+44+8+...

can be found in Euler’s work (where, of course, it didn’t make too much sense).
Let us now become familiar with the p-adic numbers by proving a few simple
results.

Lemma 14.1. Z is a subring of Z,.

Proof. Every positive integer n can be written as a “finite” p-adic number:
n=ag+ap+...+a,p". In fact, define ag by 0 < ag < p and n = ay mod p;
then let n; = (n — ag)/p and define a; by 0 < a; < p and n1 = a; mod p; now
repeat until n,, = 0.

Next, —1 = (p—1)(1+p+p®+...) € Z,; thus every integer is also a p-adic
integer. U
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Lemma 14.2. The prime p € Z is also prime in Zj,.

Proof. Assume that a,b € Z, and that p | ab. Write a = ag+aip+asp®+. .. and
b= b0+blp+b2p2+. .. with 0 < a;,b; < p. Then ab = a0b0+p(a0b1 +a1b0)+. .. is
divisible by p; this implies that p | agbg in the usual integers, and since p is prime
there, we have p | ag or p | by. Because of 0 < a;,b; < p this is only possible if
ap =0 or by =0, and then a = p(a; + asp+...) or b = p(by + bap + ...), i.e.,
plaorp|b. O

Next we claim that p is the only prime in Z,:
Lemma 14.3. Assume that a € Z,, is not divisible by p. Then a is a unit.

Proof. Write a = ag+a1p+azp*+... with 0 < a; < p. Then p { a means ag # 0,
ie., 1<ay<p—1. We now construct a p-adic integer b = by + b1p + bap® + . ..
with ab = 1. We must have 1 = ab = agby mod p, and there is a unique by with
1 <byg <p-1and agbyg =1 mod p.

Next we find 1 = ab = agbo + p(a1bg + agby) mod p?. Since aghy = 1 mod p
we have apby — 1 = pcg, and now 0 = pcg + p(aiby + agby) mod p?. This is
equivalent to aibg + agb1 + ¢ = 0 mod p, which is a linear congruence in by
(all the other numbers in there are known); since agb; = —co — a1bp mod p
has a unique solution (again because p 1 ag), we have found a unique b; with
1 S b1 S pP— 1.

Now we proceed by induction and show that, once we have constructed b,
..., by, we can determine b, 1 from a linear congruence agb,+; = something
modp. This is left as an exercise.

Now put b = bp+b1p+. ... Then ab = 1 mod p™ for every n, hence p™ | (ab—1)
for every n, and this is only possible if ab = 1. O

Lemma 14.4. Every nonzero p-adic integer can be written uniquely in the form
a = p™u for some integer n > 0 and some unit u € Zy.

Proof. Write a = ag + a1p + agp?® + ... with 0 < a; < p. Let n be the smallest
exponent for which a,, is nonzero. Then a = a,p™ + aan”Jrl +...=p"(a, +
ap41p + .. .), and since p { a,,, the p-adic number in the brackets is a unit. O

Lemma 14.5. Z, is a domain.

Proof. In fact, assume that ab = 0 for a,b € Z,. If a and b are nonzero, then
we can write a = p™wu and b = p"v for units u, v; but then uv is a unit, hence
nonzero, and then ab = p™ ™" uv is nonzero too. O

We now introduce the field Q, of p-adic numbers. It consists of quotients ¢
with a,b € Z, and b # 0. Writing a = p™u and b = p™v for units u,v we see
that § = p™ "uv~t. Thus p-adic numbers are just a power of p (possibly with
negativ exponent) times a unit in Z,.
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14.1 Valuations

The usual absolute value in the rational or real numbers has the following prop-
erty:

o |z| >0 for x € Q; || = 0 if and only if 2 = 0;
o |zyl =[] - [yl;
o |z +y| < |z| + |y| (triangle inequality).

It turns out that there are more functions with these properties. Let p > 0
be a prime number; any a € Q* can be written uniquely as a = p"b, where
b = % is a fraction whose numerator and denominator are not divisible by p:
p1{rs. Now put |a|, = p~™ and |0], = 0. This function | - |, has the following
properties:

e |a|, > 0 and |a|, = 0 if and only if a = 0;

e |abl, = |alp|b],. In fact, write a = p™~ and b = p" L, where p { rstu. Then
ab = pm‘*‘"%, hence |abl, = p~™"" = |al,|b|,-

o |a+b|, <lalp,+|blp. In fact, we will prove the stronger statement |a+b[, <
max{|al,, |bl,}. Write a = p™Z and b = p"L, where p { rstu, and assume
that m < n. (hence |al, > [blp). Then a +b = p™(L +p" L) =
p™(ru+ p"~"™st)/su, and therefore |a + 0], = |aly|ru + p" "™ st|p|tul; "
Now |tu|, = 1 since p { tu, and |ru+ p™~™st|, < 1 because |¢| < 1 for any
integer ¢, hence |a + b|, < |a|, = max{|al,,|b[,} as claimed.

Using these valuations | - |, instead of the usual absolute value (which we
will often denote by | - | from now on) we can define Cauchy sequence and the
notion of a limit. We say that a sequence (a,,) of rational numbers is Cauchy if
for every € > 0 there is an N such that |a,, — a,|, < € for all m,n > N; we say
it converges to a € Q if for every € > 0 there is an N such that |a, —a|, < ¢
for all n > N.

Cauchy sequences and converging sequences with respect to | - |, form rings.
The set A of null sequences (sequences converging to 0) actually is an ideal in
the ring C of Cauchy sequences, and the quotient ring C/N (residue classes of
Cauchy sequences modulo null sequences) turns out to be a field, namely the
field of p-adic numbers @Q,,. The reals can be constructed in the same way using
the usual absolute value, and we often write R = Q.

These new fields have strange properties. For example, the sequence a,, = p"
is a null sequence with respect to | - |,. Moreover, lim,, (1 +p+...+p") = -

1-p
with respect to | - |,. In fact,
) 1 1 _p7z+1 1 pn
1 Pt — - - -
LR S per-R Py g
hence [14+p+...+p" — ﬁ|p = p~". This clearly can be made as small as we

wish.
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We can extend the valuation | - |, defind on Q to a valuation on Q, by
writing x = p™u for some unit v € Z)’ and putting |z[, = p~™.

Let us now return to the sequence X,, with X2 = —1 mod 5" defined above.
The sequence X, clearly is Cauchy, so its limit must be a 5-adic number. We
claim that X = lim X,, satisfies X2 = —1. Given ¢ > 0 we can choose n
so large that |X — X,|, < e. Then |X? + 1|, = | X% - X2|, + | X2 + 1], =
| X — Xo|p| X — Xplp+ | X2+1], <e+p ! since X2 = —1mod p"*t. Clearly
€ 4+ p " ! can be made as small as we wish, hence X2+ 1 = 0.
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