Chapter 14

p-adic numbers

At the end of the 19th century, Hensel invented p-adic numbers as a number theoretical analogue of power series in complex analysis. It took more than 25 years before p-adic numbers were taken seriously by number theorists: this was when Hasse, around 1920, proved the Local-Global Principle for quadratic forms over \mathbb{Q} : a quadratic form in n variables with rational constants represents 0 nontrivially if and only if the quadratic form represents 0 nontrivially in each p-adic completion of \mathbb{Q}. The point is that checking representability in p-adic fields is something that can be done easily, and in a finite number of steps.

So what are p-adic numbers? Actually there are several ways of introducing them.

The Naive Approach

Let us solve the congruences $x^{2} \equiv-1 \bmod 5^{n}$ for $n \geq 1$.
For $n=1$ there are two solutions: $x \equiv \pm 2 \bmod 3$. In order to find a solution for $n=2$, note that if $x^{2} \equiv-1 \bmod 5^{2}$, then $x^{2} \equiv-1 \bmod 5$ and therefore $x \equiv \pm 2 \bmod 5$. Thus we can try to find x by writing $x=2+5 y$; then $0 \equiv x^{2}+1 \equiv 5+20 y \bmod 5^{2}$, hence $5^{2} \mid(5+20 y)$ or $5 \mid(1+4 y)$. This yields $y \equiv 1 \bmod 5$, and our solution is $x \equiv 2+5 \bmod 5^{2}$.

Now assume that we have determined $x \in \mathbb{N}$ with $x^{2} \equiv-1 \bmod 5^{n}$; in order to find a solution modulo 5^{n+1}, write $a=x+5^{n} y$. From $x^{2} \equiv-1 \bmod 5^{n}$ we get $x^{2}+1=5^{n} b$. Thus $0 \equiv a^{2}+1 \equiv x^{2}+1+2 x y 5^{n} \equiv 5^{n}(b+2 x y) \bmod 5^{n+1}$. This implies $b+2 x y \equiv 0 \bmod 5$, and since $5 \nmid 2 x$, this congruence must have a unique solution modulo 5 .

Thus we have proved: there exist integers x_{k} with $0 \leq x_{k}<5$ such that for every $n \geq 1$ the integer $X_{n}=x_{0}+5 x_{1}+5^{2} x_{2}+\ldots+5^{n-1} x_{n-1}$ solves the congruence $X_{n}^{2} \equiv-1 \bmod 5^{n}$.

Of course the sequence $\left(X_{n}\right)$ does not converge, so it does not seem to make sense of defining

$$
x=x_{0}+5 x_{1}+5^{2} x_{2}+\ldots
$$

Yet this is exactly what Hensel did. Such an expression is called a 5 -adic integers, and the set of all 5 -adic integers forms a ring.

In fact, fix a prime number p and consider formal power series in p :

$$
\begin{equation*}
a=a_{0}+a_{1} p+a_{2} p^{2}+\ldots \tag{14.1}
\end{equation*}
$$

where $0 \leq a_{i} \leq p-1$. The key word here is formal, that is, you negelct things like convergence. Now you can clearly add, subtract and multiply such power series; for example, let us add the 5 -adic numbers

$$
\begin{aligned}
& 3+2 \cdot 5+0 \cdot 5^{2}+4 \cdot 5^{3}+\ldots \\
& 1+4 \cdot 5+2 \cdot 5^{2}+2 \cdot 5^{3}+\ldots \\
& \hline 4+6 \cdot 5+2 \cdot 5^{2}+6 \cdot 5^{3}+\ldots
\end{aligned}
$$

Now observe that $6=1+5$, hence $6 \cdot 5=1 \cdot 5+1 \cdot 5^{2}$, hence we carry 1 and find

$$
4+6 \cdot 5+2 \cdot 5^{2}+6 \cdot 5^{3}+\ldots=4+1 \cdot 5+3 \cdot 5^{2}+1 \cdot 5^{3}+\ldots
$$

where we have carried another 1 at the coefficient of 5^{3}. Clearly we can also multiply p-adic numbers this way, so we get a ring \mathbb{Z}_{p}, the ring of p-adic integers, whose neutral element is $0=0+0 \cdot p+0 \cdot p^{2}+\ldots$ and whose unit element is $1=1+0 \cdot p+0 \cdot p^{2}+\ldots$. Note that \mathbb{Z}_{p} contains \mathbb{Z} as a subring: every natural number a actually has a finite expansion into a p-adic series. What about -1 ? Well,

$$
\begin{aligned}
-1 & =p-1-1 \cdot p \\
& =p-1+(p-1) \cdot p-p^{2} \\
& =p-1+(p-1) \cdot p+(p-1) \cdot p^{2}-p^{3} \\
& =\ldots \\
& =p-1+(p-1) \cdot p+(p-1) \cdot p^{2}+(p-1) \cdot p^{3}+\ldots
\end{aligned}
$$

Actually, this is not too surprising: consider the geometric series $\frac{1}{1-x}=1+x+$ $x^{2}+\ldots$ and plug in p : then $\frac{1}{1-p}=1+p+p^{2}+\ldots$, and multiplying through by $p-1$ gives you the p-adic expansion of -1 above. Actually, the "equation"

$$
-1=1+2+4+8+\ldots
$$

can be found in Euler's work (where, of course, it didn't make too much sense).
Let us now become familiar with the p-adic numbers by proving a few simple results.

Lemma 14.1. \mathbb{Z} is a subring of \mathbb{Z}_{p}.
Proof. Every positive integer n can be written as a "finite" p-adic number: $n=a_{0}+a_{1} p+\ldots+a_{m} p^{m}$. In fact, define a_{0} by $0 \leq a_{0}<p$ and $n \equiv a_{0} \bmod p ;$ then let $n_{1}=\left(n-a_{0}\right) / p$ and define a_{1} by $0 \leq a_{1}<p$ and $n_{1} \equiv a_{1} \bmod p$; now repeat until $n_{m}=0$.

Next, $-1=(p-1)\left(1+p+p^{2}+\ldots\right) \in \mathbb{Z}_{p}$; thus every integer is also a p-adic integer.

Lemma 14.2. The prime $p \in \mathbb{Z}$ is also prime in \mathbb{Z}_{p}.
Proof. Assume that $a, b \in \mathbb{Z}_{p}$ and that $p \mid a b$. Write $a=a_{0}+a_{1} p+a_{2} p^{2}+\ldots$ and $b=b_{0}+b_{1} p+b_{2} p^{2}+\ldots$ with $0 \leq a_{i}, b_{i}<p$. Then $a b=a_{0} b_{0}+p\left(a_{0} b_{1}+a_{1} b_{0}\right)+\ldots$ is divisible by p; this implies that $p \mid a_{0} b_{0}$ in the usual integers, and since p is prime there, we have $p \mid a_{0}$ or $p \mid b_{0}$. Because of $0 \leq a_{i}, b_{i}<p$ this is only possible if $a_{0}=0$ or $b_{0}=0$, and then $a=p\left(a_{1}+a_{2} p+\ldots\right)$ or $b=p\left(b_{1}+b_{2} p+\ldots\right)$, i.e., $p \mid a$ or $p \mid b$.

Next we claim that p is the only prime in \mathbb{Z}_{p} :
Lemma 14.3. Assume that $a \in \mathbb{Z}_{p}$ is not divisible by p. Then a is a unit.
Proof. Write $a=a_{0}+a_{1} p+a_{2} p^{2}+\ldots$ with $0 \leq a_{i}<p$. Then $p \nmid a$ means $a_{0} \neq 0$, i.e., $1 \leq a_{0} \leq p-1$. We now construct a p-adic integer $b=b_{0}+b_{1} p+b_{2} p^{2}+\ldots$ with $a b=1$. We must have $1=a b \equiv a_{0} b_{0} \bmod p$, and there is a unique b_{0} with $1 \leq b_{0} \leq p-1$ and $a_{0} b_{0} \equiv 1 \bmod p$.

Next we find $1=a b \equiv a_{0} b_{0}+p\left(a_{1} b_{0}+a_{0} b_{1}\right) \bmod p^{2}$. Since $a_{0} b_{0} \equiv 1 \bmod p$ we have $a_{0} b_{0}-1=p c_{0}$, and now $0 \equiv p c_{0}+p\left(a_{1} b_{0}+a_{0} b_{1}\right) \bmod p^{2}$. This is equivalent to $a_{1} b_{0}+a_{0} b_{1}+c_{0} \equiv 0 \bmod p$, which is a linear congruence in b_{1} (all the other numbers in there are known); since $a_{0} b_{1} \equiv-c_{0}-a_{1} b_{0} \bmod p$ has a unique solution (again because $p \nmid a_{0}$), we have found a unique b_{1} with $1 \leq b_{1} \leq p-1$.

Now we proceed by induction and show that, once we have constructed b_{0}, \ldots, b_{n}, we can determine b_{n+1} from a linear congruence $a_{0} b_{n+1} \equiv$ something $\bmod p$. This is left as an exercise.

Now put $b=b_{0}+b_{1} p+\ldots$ Then $a b \equiv 1 \bmod p^{n}$ for every n, hence $p^{n} \mid(a b-1)$ for every n, and this is only possible if $a b=1$.

Lemma 14.4. Every nonzero p-adic integer can be written uniquely in the form $a=p^{n} u$ for some integer $n \geq 0$ and some unit $u \in \mathbb{Z}_{p}$.

Proof. Write $a=a_{0}+a_{1} p+a_{2} p^{2}+\ldots$ with $0 \leq a_{i}<p$. Let n be the smallest exponent for which a_{n} is nonzero. Then $a=a_{n} p^{n}+a_{n+1} p^{n+1}+\ldots=p^{n}\left(a_{n}+\right.$ $\left.a_{n+1} p+\ldots\right)$, and since $p \nmid a_{n}$, the p-adic number in the brackets is a unit.

Lemma 14.5. \mathbb{Z}_{p} is a domain.
Proof. In fact, assume that $a b=0$ for $a, b \in \mathbb{Z}_{p}$. If a and b are nonzero, then we can write $a=p^{m} u$ and $b=p^{n} v$ for units u, v; but then $u v$ is a unit, hence nonzero, and then $a b=p^{m+n} u v$ is nonzero too.

We now introduce the field \mathbb{Q}_{p} of p-adic numbers. It consists of quotients $\frac{a}{b}$ with $a, b \in \mathbb{Z}_{p}$ and $b \neq 0$. Writing $a=p^{m} u$ and $b=p^{n} v$ for units u, v we see that $\frac{a}{b}=p^{m-n} u v^{-1}$. Thus p-adic numbers are just a power of p (possibly with negativ exponent) times a unit in \mathbb{Z}_{p}.

14.1 Valuations

The usual absolute value in the rational or real numbers has the following property:

- $|x| \geq 0$ for $x \in \mathbb{Q} ;|x|=0$ if and only if $x=0 ;$
- $|x y|=|x| \cdot|y|$;
- $|x+y| \leq|x|+|y|$ (triangle inequality).

It turns out that there are more functions with these properties. Let $p>0$ be a prime number; any $a \in \mathbb{Q}^{\times}$can be written uniquely as $a=p^{m} b$, where $b=\frac{r}{s}$ is a fraction whose numerator and denominator are not divisible by p : $p \nmid r s$. Now put $|a|_{p}=p^{-m}$ and $|0|_{p}=0$. This function $|\cdot|_{p}$ has the following properties:

- $|a|_{p} \geq 0$ and $|a|_{p}=0$ if and only if $a=0 ;$
- $|a b|_{p}=|a|_{p}|b|_{p}$. In fact, write $a=p^{m} \frac{r}{s}$ and $b=p^{n} \frac{t}{u}$, where $p \nmid r s t u$. Then $a b=p^{m+n} \frac{r t}{s u}$, hence $|a b|_{p}=p^{-m-n}=|a|_{p}|b|_{p}$.
- $|a+b|_{p} \leq|a|_{p}+|b|_{p}$. In fact, we will prove the stronger statement $|a+b|_{p} \leq$ $\max \left\{|a|_{p},|b|_{p}\right\}$. Write $a=p^{m} \frac{r}{s}$ and $b=p^{n} \frac{t}{u}$, where $p \nmid r s t u$, and assume that $m \leq n$. (hence $\left.|a|_{p} \geq|b|_{p}\right)$. Then $a+b=p^{m}\left(\frac{r}{s}+p^{n-m} \frac{t}{u}\right)=$ $p^{m}\left(r u+p^{n-m} s t\right) / s u$, and therefore $|a+b|_{p}=|a|_{p}\left|r u+p^{n-m} s t\right|_{p}|t u|_{p}^{-1}$. Now $|t u|_{p}=1$ since $p \nmid t u$, and $\left|r u+p^{n-m} s t\right|_{p} \leq 1$ because $|c| \leq 1$ for any integer c, hence $|a+b|_{p} \leq|a|_{p}=\max \left\{|a|_{p},|b|_{p}\right\}$ as claimed.

Using these valuations $|\cdot|_{p}$ instead of the usual absolute value (which we will often denote by $|\cdot|_{\infty}$ from now on) we can define Cauchy sequence and the notion of a limit. We say that a sequence $\left(a_{n}\right)$ of rational numbers is Cauchy if for every $\varepsilon>0$ there is an N such that $\left|a_{m}-a_{n}\right|_{p}<\varepsilon$ for all $m, n>N$; we say it converges to $a \in \mathbb{Q}$ if for every $\varepsilon>0$ there is an N such that $\left|a_{n}-a\right|_{p}<\varepsilon$ for all $n>N$.

Cauchy sequences and converging sequences with respect to $|\cdot|_{p}$ form rings. The set \mathcal{N} of null sequences (sequences converging to 0) actually is an ideal in the ring \mathcal{C} of Cauchy sequences, and the quotient $\operatorname{ring} \mathcal{C} / \mathcal{N}$ (residue classes of Cauchy sequences modulo null sequences) turns out to be a field, namely the field of p-adic numbers \mathbb{Q}_{p}. The reals can be constructed in the same way using the usual absolute value, and we often write $\mathbb{R}=\mathbb{Q}_{\infty}$.

These new fields have strange properties. For example, the sequence $a_{n}=p^{n}$ is a null sequence with respect to $|\cdot|_{p}$. Moreover, $\lim _{n}\left(1+p+\ldots+p^{n}\right)=\frac{1}{1-p}$ with respect to $|\cdot|_{p}$. In fact,

$$
1+p+\ldots+p^{n}-\frac{1}{1-p}=\frac{1-p^{n+1}}{1-p}-\frac{1}{1-p}=\frac{p^{n}}{p-1}
$$

hence $\left|1+p+\ldots+p^{n}-\frac{1}{1-p}\right|_{p}=p^{-n}$. This clearly can be made as small as we wish.

We can extend the valuation $|\cdot|_{p}$ defind on \mathbb{Q} to a valuation on \mathbb{Q}_{p} by writing $x=p^{m} u$ for some unit $u \in \mathbb{Z}_{p}^{\times}$and putting $|x|_{p}=p^{-m}$.

Let us now return to the sequence X_{n} with $X_{n}^{2} \equiv-1 \bmod 5^{n}$ defined above. The sequence X_{n} clearly is Cauchy, so its limit must be a 5 -adic number. We claim that $X=\lim X_{n}$ satisfies $X^{2}=-1$. Given $\varepsilon>0$ we can choose n so large that $\left|X-X_{n}\right|_{p}<\varepsilon$. Then $\left|X^{2}+1\right|_{p}=\left|X^{2}-X_{n}^{2}\right|_{p}+\left|X_{n}^{2}+1\right|_{p}=$ $\left|X-X_{n}\right|_{p}\left|X-X_{n}\right|_{p}+\left|X_{n}^{2}+1\right|_{p} \leq \varepsilon+p^{-n-1}$ since $X_{n}^{2} \equiv-1 \bmod p^{n+1}$. Clearly $\varepsilon+p^{-n-1}$ can be made as small as we wish, hence $X^{2}+1=0$.

