
Chapter 12

The Arithmetic of Fp[X ]

In this chapter we will prove several theorems in Fp[X] that are close analogs of
results we have proved before for the ring of integers Z. In particular, we will
derive the quadratic reciprocity law in Fp[X].

12.1 The Analogy between Z and Fp[X]

Let P be a prime in Fp[X]. We have already seen that there are exactly NP =
pdeg P residue classes modulo P . The ring (actually a field since P is prime)
of residue classes modulo P is denoted by Fp[X]/(P ), and we have N(P ) =
#Fp[X]/(P ). Since every nonzero residue class modulo P has an inverse (in
other words: since every nonzero element in Fp[X]/(P ) is a unit), an application
of Lagrange’s theorem gives us the analog of Fermat’s Little Theorem:

FNP−1 ≡ 1 mod P

for all F ∈ Fp[X]/(P ) not divisible by P . It is also clear how to generalize this
to composite polynomials P and derive the analog of Euler-Fermat:

FΦ(A) ≡ 1 mod A, where Φ(A) = #(Fp[X]/(A))×.

Proving the formula Φ(Pm) = (NP − 1)N(P )m−1 for prime powers Pm and
the analog of Euler’s phi-function is straightforward. Similarly, we can show
that Φ(FG) = Φ(F )Φ(G) for coprime polynomials F,G ∈ Fp[X]. You are
also invited to check whether our proof of Fermat’s 2-squares theorem can be
transferred to Fp[X].

domain Z Z[i] Fp[X]

norm |m| N(a+ bi) = a2 + b2 N(f) = pdeg f

Fermat a|p|−1 ≡ 1 (p) (a+ bi)Nπ−1 ≡ 1 (π) FN(P )−1 ≡ 1 (F )
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12.2 Quadratic Reciprocity in Fp[X]

Again we can define the quadratic Legendre symbol via Euler’s criterium: If P
is an irreducible polynomial over Fp with p odd, then fNP−1 ≡ 1 mod P , hence
0 ≡ fNP−1 − 1 = (f (NP−1)/2 − 1)(f (NP−1)/2 + 1), and since P is prime we
conclude that f (NP−1)/2 ≡ ±1 mod p. Now define ( f

P )2 ∈ {−1,+1} by( f
P

)
2
≡ f

NP−1
2 mod P.

For example, P = X2+1 is prime in F3[X] and ( X+1
X2+1 )2 ≡ (X+1)(3

2−1)/2 =
(X + 1)4 = (X2 + 2X + 1)2 ≡ (2X)2 = 4X2 = X2 ≡ −1 mod P shows that
( X+1

X2+1 )2 = −1.
Here are a few formal properties whose proofs are left as an exercise:

Proposition 12.1. For A,B, P ∈ Fp[X], where p is an odd prime and P irre-
ducible, we have

1. (A
P )2 = (B

P )2 if A ≡ B mod P ;

2. (AB
P )2 = (A

P )2(B
P )2;

3. (A
P )2 = 1 if A ≡ B2 mod P .

Moreover, the congruence f(X) ≡ f(a) mod (X − a) implies that ( f(X)
X−a )2 =

( f(a)
X−a )2. The last symbol can be evaluated: ( f(a)

X−a )2 ≡ f(a)(p−1)/2 ≡ ( f(a)
p ) mod

P , hence ( f(X)
X−a )2 = ( f(a)

p ), where the symbol on the right hand side is the usual
Legendre symbol in Z.

In particular, over F3 we have (X2+1
X+1 )2 = ( 2

3 ) = −1.

Lemma 12.2. For a ∈ F×p and a prime P ∈ Fp[X] we have ( a
P )2 = (a

p )deg P .

Proof. Put m = degP . Since N(P ) = pm and pm − 1 = (p − 1)(1 + p + p2 +
. . .+pm−1), the claim follows from ( a

P )2 ≡ a(pm−1)/2 = (a(p−1)/2)1+p+...+pm−1 ≡
(a

p )1+p+...+pm−1
= (a

p )m mod P.

The reciprocity law for primes of degree 1 is now easily proved. In fact,
the lemma above implies (X−a

X−b )2 = ( b−a
X−b )2 = ( b−a

p ) and ( X−b
X−a )2 = ( a−b

X−a )2 =
(a−b

p ). Thus (X−a
X−b )2( X−b

X−a )2 = ( b−a
p )(a−b

p ) = (−1
p ). This is a special case of the

quadratic reciprocity law in Fp[X]:

Theorem 12.3. Let p be an odd prime, and let P,Q ∈ Fp[X] be primes (irre-
ducible monic polynomials with coefficients in Fp). Then(P

Q

)
2

(Q
P

)
2

= (−1)
p−1
2 deg P deg Q.

108



Just as the reciprocity law in Z (or the one in Z[i] for that matter), this also
holds for composite polynomials, with the Legendre symbols replaced by Jacobi
symbols.

We can also extend the reciprocity law from monic polynomials to arbitrary
polynomials. To this end we introduce the function sgn by letting sgn (F )
denote the leading coefficient of F . For example, sgn (2X2 + 3) = 2. Note that
sgn : Fp[X] −→ Fp is a ring homomorphism; this means sgn (F+G) = sgn (F )+
sgn (G) and sgn (FG) = sgn (F )sgn (G). Also observe that if F ∈ Fp[X] is an
arbitrary polynomial, then F = sgn (F )f , where f is monic.

Now let F,G ∈ Fp[X] be prime polynomials, and write F = sgn (F )f and
G = sgn (G)g for monic f, g ∈ Fp[x]. Now observe that A ≡ B mod G is
equivalent to A ≡ B mod g since G/g is a unit; thus (F

G ) = (F
g ). Next we

compute away:(F
G

)
=

(F
g

)
=

( sgn (F )
g

)(f
g

)
=

( sgn (F )
p

)deg g(f
g

)
,

and similarly (G
F

)
=

( sgn (G)
p

)deg f( g
f

)
,

hence (F
G

)(G
F

)
=

( sgn (F )
p

)deg G( sgn (G)
p

)deg F (f
g

)( g
f

)
=

( sgn (F )
p

)deg G( sgn (G)
p

)deg F (−1
p

)deg F deg G

.

Thus the general reciprocity law (assuming we have proved it for monic prime
polynomials) reads:(P

Q

)(Q
P

)
=

( sgn (P )
p

)deg Q( sgn (Q)
p

)deg P (−1
p

)deg P deg Q

.

Ok,now all we have to do is prove the reciprocity law. As a first step we
derive Gauss’s Lemma.

Gauss’s Lemma

A halfsystem A modulo Q is a collection of 1
2 (NQ − 1) residue classes modulo

Q with the property that every residue class mod Q can be written in the form
a mod Q or −a mod Q for a ∈ A.

Now multiply each element ai in the half system by P ; we find aiP ≡
(−1)s(i)aj mod Q for some s(i) ∈ {0, 1} and some index j. Multiplying all these
congruences and observing that the product over all the aj on the right is equal
to the product of the ai on the left shows that (P

Q )2 =
∏

(−1)s(i) = (−1)µ with
µ =

∑
s(i).
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Here’s an example: consider Q = X2 + 1 over F3. Then NQ = 9, hence
{0, 1, 2, X,X + 1, X + 2, 2X, 2X + 1, 2X + 2} is a complete system of residue
classes modulo X2 +1, and {1, X,X+1, X+2} is a half system modulo X2 +1
(this is most easily seen by picking any residue class like 1 and then omitting
−1 = 2; next pick X and omit −X = 2X etc. until you are done). Actually
it is easy to give a halfsystem in general: if Q is a prime of degree n in Fp[X],
let B = {1, 2, . . . , p−1

2 } denote a halfsystem modulo p in integers, and put
A = {f =∈ Fp[X] : deg f < n, sgn (f) ∈ B}, where sgn (f) denotes the leading
coefficient of f .

In order to compute ( X+1
X2+1 )2 using Gauss’s Lemma we proceed as follows:

(X + 1) · 1 ≡ X + 1 mod X2 + 1,

(X + 1) ·X ≡ X2 +X ≡ X + 2 mod X2 + 1,

(X + 1) · (X + 1) ≡ 2X ≡ −X mod X2 + 1,

(X + 1) · (X + 2) ≡ X2 +X ≡ 1 mod X2 + 1.

Thus the number of minus signs is 1, hence µ = 1, and thus ( X+1
X2+1 )2 = −1.

With the preliminaries all in place, let us now move on to the actual proof
of the quadratic reciprocity law.

Exercises

12.1 Compute ( X+1
X2+2

)2 in F5[X] using the definition (Euler’s criterium) and using
Gauss’s Lemma.

12.2 Show that A = {f =∈ Fp[X] : deg f < deg Q, sgn (f) ∈ B} is a halfsystem
modulo some prime Q in Fp[X] if B is a half system modulo p in Z.
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