
Chapter 11

Finite Fields and Primitive
Roots

11.1 Fp[X]

In this chapter we will construct and study finite fields; an important tool will be
the polynomial ring Fp[X], where Fp = Z/pZ is the finite field with p elements.
We know that Fp[X] is Euclidean, hence a PID and a UFD.

When we regard Z/pZ as a finite field Fp, we usually omit the “modp”.
Thus we simply write −1 = 2 in F3 instead of −1 ≡ 2 mod 3. This is standard
practice – don’t let this abuse of language confuse you.

We know that the units in R = Fp[X] are the nonzero constants: R× = F×p .
This is because deg fg = deg f + deg g, so fg = 1 implies deg f = deg g = 0. In
particular, every polynomial f ∈ Fp[X] is a unit times a monic polynomial.

Since linear polynomials X + a for every a ∈ Fp are irreducible (X + a = fg
implies 1 = deg f+deg g, hence f or g is a unit), they are primes. In particular,
the polynomials X, X + 1, . . . , X + p− 1 are primes in Fp[X]. Are there more?
Of course, if p 6= 2, then 2X, 2X + 1, . . . , 2X + p− 1 are also prime; but since
e.g. 2X + 1 = 2(X + 1

2 ) = 2(X + p+1
2 ) differs from X + p+1

2 only by the unit 2,
we regard them as one and the same prime (just as in Z, the primes 3 and −3
are counted as one).

In order to minimize the confusion, let us agree that a prime is a monic
polynomial (just as we can define a prime in Z to be positive). A more satisfying
solution would be to talk about prime ideals instead of primes: in Z we have
(5) = (−5), so 5 and −5 generate the same prime ideal (5), and in Fp[X] we
have (X + r) = (aX + ar) for all nonyero a.

Now we will answer the question whether Fp[X] contains infinitely many
primes:

Proposition 11.1. There are infinitely many primes in Fp[x].

Proof. Assume that there are only finitely many, say f1 = X, . . . , fr. Then let
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F = f1 · · · fr + 1. Since degF ≥ 1, this polynomial must have a prime factor f .
Clearly f 6= fj since fj | F and fj | F − 1 would imply that fj | 1. Thus f is a
prime not on the list.

In F2[X], the primes of degree 1 are X and X + 1. In order to find a
new one, take F (X) = X(X + 1) + 1 = X2 + X + 1, which is irreducible in
F2[X] and therefore a prime of degree 2. If you do the same thing in F3[X],
then F (X) = X2 + X + 1 is not irreducible since F (X) = (X − 1)2. but this
gives you a new prime X − 1 = X + 2. Repeating Euclid’s argument gives
F (X) = X(X + 1)(X − 1) + 1 = X3 − X + 1, which is irreducible (since it
cannot be divisible by any linear factor) and therefore prime.

Writing down primes explicitly is difficult. For example, f(X) = X2 + 1 is
prime in F3[X] but not in F5[x]. In fact:

Proposition 11.2. Let p be an odd prime. Then X2 + 1 is prime in Fp[X] if
and only if p ≡ 3 mod 4.

Proof. If p ≡ 1 mod 4, then there is some a ∈ Fp with ar2 = −1. Thus X2+1 =
X2 − r2 = (X − r)(X + r) is reducible.

Now assume that p ≡ 3 mod 4. If X2 + 1 = (X − r)(X − s), then r+ s = 0,
hence X2 + 1 = (X − r)(X + r) = X2 − r2. This implies r2 = −1, which is
impossible in Fp for primes p ≡ 3 mod 4.

This result should ring a bell: compare the factorizations of X2 +1 in Fp[X]
with the factorizations of the principal ideal (p) in Q(i):

p Fp[X] Q(i)

2 X2 + 1 = (X + 1)2 (2) = (1 + i)2

p ≡ 1 mod 4 X2 + 1 = (X − r)(X + r) (p) = (a+ bi)(a− bi)

p ≡ 3 mod 4 X2 + 1 = X2 + 1 (p) = (p)

This analogy will be explained in algebraic number theory.
Thus it is not obvious that there exist primes of degree 2 in every Fp[X]. In

fact, such primes always exist:

Proposition 11.3. There are exactly p(p−1)
2 irreducible quadratic polynomials

in Fp[X].

Proof. There are exactly p2 monic polynomials X2 + rX + s ∈ Fp[X]. The
reducible polynomials among them have the form (X − a)(X − b) for a, b ∈ Fp.
Recalling that (X − a)(X − b) = (X − b)(X − a) we easily see that there are
exactly

(
p
2

)
polynomials with a 6= b and p with a = b, hence there are p(p+1)

2

reducible polynomials. Thus there exist exactly p(p−1)
2 irreducible quadratic

polynomials in Fp[X].
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For example, X2 +X + 1 is the unique prime of degree 2 in F2[X], and the
quadratic primes in F3[X] are X2 + 1, X2 +X − 1 and X2 −X − 1.

This argument can be generalized to count the number of primes of any
given degree. In this way, Gauss proved

Proposition 11.4. For any prime p and any given n > 0, there is an irreducible
element f ∈ Fp[X] of degree n.

This is proved in abstract algebra.

11.2 Residue Classes modulo Polynomials

Now recall that g ≡ h mod f if f | (g − h). What can we say about the residue
classes modulo f in Fp[X]? Let us look at a few examples.

1. The ring Fp[X]/(X) has exactly p residue classes 0, 1, . . . , p− 1: in fact,
since X ≡ 0 mod X we have anX

n + . . . + a1X + a0 ≡ a0 mod X. Thus
every polynomial is congruent to a constant modulo X. On the other
hand, a ≡ b mod X implies a = b, and the claim follows. The map
sending the residue class a mod p to a mod X is a ring isomorphism: we
have Fp[X]/(X) ' Fp.

More generally, Fp[X]/(X − a) ' Fp for any a ∈ Fp. Make sure you
understand why f(X) ≡ f(a) mod (X − a).

2. The ring Fp[X]/(X2) has exactly p2 residue classes, namely a+ bX with
a, b ∈ Fp. Note that this is not a field since X ·X ≡ 0 mod X2.

3. The ring F2[X]/(f) for f(X) = X2+X+1) has exactly 4 elements, namely
the classes represented by 0, 1, X and X+1. For example, X3 = X ·X2 ≡
X(−X − 1) = X(X + 1) = X2 +X = X −X − 1 = 1 mod f .

It is straightforward to compute an addition and multiplication table for
the residue classes:

+ 0 1 X X + 1
0 0 1 X X + 1
1 1 0 X + 1 X
X X X + 1 0 1

X + 1 X + 1 X 1 0

· 0 1 X X + 1
0 0 0 0 0
1 0 1 X X + 1
X 0 X X + 1 1

X + 1 0 X + 1 1 X
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In general, there are exactly N(f) = pdeg f residue classes modulo f ; they
form a ring denoted by Fp[X]/(f). If you have a polynomial f(X) = Xn + . . .+
a1X + a0 ∈ Fp[X], then working modulo f works like this: observe that

Xn ≡ −an−1X
n−1 − . . .− a1X − a0 mod f

allows you to reduce any polynomial g ∈ Fp[X] to some polynomial of degree
< deg f by repeatedly applying this definition. For example, for f(X) = X2 +1
we get

X2 ≡ −1 mod f,

X3 ≡ −X mod f,

X4 ≡ −X2 ≡ 1 mod f

etc. In particular, every polynomial g ∈ Fp[X] is congruent modulo f to one of
Sf = {bn−1X

n−1 + . . .+b1X+b0 : bj ∈ Fp}. Moreover, none of the polynomials
in Sf are congruent modulo f : if gi ≡ gj mod f for polynomials of degree
< deg f , then f | (gi − gj), and since the polynomial on the right hand side
has degree < deg f , it must be 0. This shows that Sf is a complete system of
residue classes modulo f , and in particular it shows that there are exactly pdeg f

residue classes modulo f .

Proposition 11.5. The ring Fp[X]/(f) of residue classes modulo f has exactly
pdeg f elements.

The norm of f is by definition N(f) = #Fp[X]/(f) (this is how you define
the norm of ideals in algebraic number theory), and we have found that N(f) =
pdeg f .

11.3 Finite Fields

Now recall that if f is a prime in Fp[X], then Fp[X]/(f) is a domain: in fact,
if ab ≡ 0 mod f , then f | ab, hence f | a or f | b, which in turn implies that
a ≡ 0 mod f or b ≡ 0 mod f . Since Fp[X]/(f) has pdeg f elements, it is a finite
field. In abstract algebra you will see a proof that any finite field has pn elements
for some prime p and some integer n ≥ 1, and that there is exactly one such
field for each pair (p, n) up to isomorphism.

Proposition 11.6. Let K be a field. Then every polynomial f ∈ K[X] has at
most deg f roots.

Proof. Assume that f has the root a ∈ K. Then f(a) = 0. Write f(X) =
(X − a)g(X) + r(X) for some polynomial r with deg r < deg(X − a) = 1. Then
deg r = 0, hence r(X) is a constant. Plugging in X = a shows that r = 0.

We have seen that if f(a) = 0, then f(X) = (X−a)g(X) for some polynomial
g of degree deg g = deg f − 1. If g has a root, we can continue in this way; since
after at most deg f steps we reach a constant polynomial, we see that we can
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write f(X) = (X − a1) · · · (X − ar)g(X), where g is a polynomial without roots
in K. Now f(a) = (a−a1) · · · (a−ar)g(a). If a product in a field is zero, one of
the factors is; thus if f(a) = 0, then a = ai for some i, and the claim follows.

Note that the quadratic polynomial X2 − 1 has four roots in (Z/8Z)[X],
namely X ≡ 1, 3, 5, 7 mod 8. Although we still can factor f(X) = X2 − 1 =
(X − 1)(X + 1), this does not imply that X = 1 and X = −1 are the only
roots of f : in fact we have f(3) = 0 even though none of the factors 3− 1 = 2
and 3 + 1 = 4 are ≡ 0 mod 8. Also, f has the different factorizations f(X) =
(X − 1)(X + 1) = (X − 3)(X + 3).

We now prove a generalization of the Theorem of Euler-Fermat:

Theorem 11.7 (Lagrange’s Theorem). Let G be a finite abelian group of order
#G = n (written multiplicatively). Then gn = 1.

For the group G = (Z/mZ)× of coprime residue classes modulo m this is
just the Theorem of Euler-Fermat. For the multiplicative group F× of a finite
field with n = qm elements it means that an−1 = 1 for all a ∈ F×.

Proof. Write G = {g1 = 1, g2, . . . , gn}. Then

g · g1 = h1,

. . . . . .

g · gn = hn.

We now claim that G = {h1, . . . , hn}. It is clearly sufficient to show that the
hi are pairwise distinct. But if hi = hj , then g · gi = g · gj , and multiplying
through by g−1 we find gi = gj .

Multiplying these equations together shows that gn
∏
gi =

∏
hi, and since∏

gi =
∏
hi we conclude that gn = 1.

We also can give an abstract version of Wilson’s Theorem. In fact, let G be
a finite abelian group with n elements, say G = {g1 = 1, . . . , gn}. In groups,
each element has an inverse, and we can form pairs (g, g−1). How often does it
happen that g = g−1? Elements with this property are solutions of the equation
g2 = 1. We claim that the elements with this property form a subgroup H of
G. In fact, if g2 = 1 and h2 = 1, then (gh)2 = g2h2 = 1 since G is abelian.
Moreover, if g ∈ H, then g−1 = g inH.

By multiplying over pairs of inverse elements we see that
∏

g∈G\H = 1. Thus∏
g∈G =

∏
g∈G\H

∏
h∈H =

∏
h∈H .

This is in fact Wilson’s theorem: if G = (Z/pZ)×, then H = {+1,−1},
and we find

∏
g∈G g = [−1]. More generally, we have H = {−1,+1} whenever

G = F×p is the multiplicative group of a finite field. In fact, g2 = 1 means
0 = g2 − 1 = (g − 1)(g + 1), and in fields this implies g = 1 or g = −1.

Note that there are groups in which g2 = 1 has lots of solutions; in G =
(Z/8Z)×, for example, we have g2 = 1 for each element since a2 ≡ 1 mod 8
whenever a is odd.
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11.4 Primitive Roots

We now come to an extremely important theorem:

Theorem 11.8. The multiplicative group of any finite field is cyclic.

A finite group G is called cyclic if there is an element g ∈ G such that every
h ∈ G is a power of g, i.e., such that h = gn for some integer n (if G is written
multiplicatively) or h = ng (if G is written additively). In such a case we say
that G is generated by g.

Examples:

• A trivial example: The groups Z/mZ are generated by the residue class
1 mod m: every element of Z/mZ has the form n ≡ n · 1 mod m.

• The group (Z/5Z)× = {1, 2, 3, 4 mod 5} is generated by 2 mod 5 since
2 ≡ 2, 22 ≡ 4, 23 ≡ 3 and 24 ≡ 1 mod 5. In our new notation this would
read that F×5 = {1, 2, 3, 4} is cyclic since 21 = 2, 22 = 4, 23 = 3 and 24 = 1
in F5.

• The group (Z/8Z)× is not cyclic: each of the residue classes 1, 3, 5,
7 mod 8 does not generate the full group.

Since (Z/pZ)× is the multiplicative group of the finite field Z/pZ, it is cyclic.
Generators of (Z/pZ)× are called primitive roots modulo p. For example, 2 is
a primitive root modulo 5, and 3 is a primitive root modulo 7.

For the proof we a bit of information on the order of elements a in finite
abelian groups G: this is the smallest positive integer r such that ar = 1.

Lemma 11.9. Let g be an element of order n in some finite abelian group G.
If gm = 1, then n | m.

Proof. Write m = qn + r with 0 ≤ r < n (Euclidean division); then 1 = gm =
gqn+r = qqngr = gr. Since n is the minimal positive exponent with this property
and r < n, we must have r = 0. This proves the claim.

Lemma 11.10. If G is an abelian group, and if a, b ∈ G are elements of order
m and n respectively such that gcd(m,n) = 1, then ab has order mn.

Proof. Clearly (ab)mn = amnbmn = (am)n(bm)n = 1, so ab has order dividing
mn (note that we have used commutativity here).

For the converse, let k denote the order of mn, that is the minimal integer
k with 1 ≤ k ≤ mn such that (ab)k = 1; we have to show that k = mn.

From (ab)k = 1 we get 1 = (ab)km = akmbkm = bkm; hence n | km by
Lemma 11.9; since gcd(n,m) = 1, we have n | k.

Exactly the same reasoning with the roles of a and b interchanged shows
that m | k. But gcd(m,n) = 1, hence n | k and m | k imply that mn | k. Since
k 6= 0, we conclude that k ≥ mn, and this proves the claim.
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Proof of Theorem 11.8. Let n = #F× denote the number of elements of the
finite abelian group F×. If n = 1, the claim is trivial because F× = {1} is
clearly generated by 1. If n > 1, let p be a prime divisor of the order n of F×.
Then there is an element a ∈ F such that an/p 6= 1. For if not, then every
a ∈ F is a root of the polynomial f(X) = Xn/p − 1; in particular, f has degree
n/p and n roots. But polynomials f over fields can have at most deg f roots:
contradiction.

Now let pr be the exact power of a prime p that divides n = #F×; then
we claim that the element x = an/pr

has order pr. In fact, xpr

= an = 1
by Lagrange’s Theorem (in the case that we are most interested in, namely
F = Z/pZ, this is just Fermat’s Little Theorem), so the order of x divides pr

by Lemma 11.9. If the order were smaller, then we would have xpr−1
= 1; but

xpr−1
= an/p 6= 1 by choice of a.

Now write n = pr1
1 · · · prt

t . By the above, we can construct an element xi of
order pri

i for every 1 ≤ i ≤ t. But then x1 · · ·xt has order n by Lemma 11.10
(use induction).

The fact that (Z/pZ)× is cyclic can be used to give another proof of the
fact that the congruence x2 ≡ −1 mod p is solvable if p ≡ 1 mod 4: since
(Z/pZ)× is cyclic, there is an element g ∈ Z such that [x] has order p − 1.
Thus gp−1 ≡ 1 mod p, hence p | (gp−1 − 1) = (g(p−1)/2 − 1)(g(p−1)/2 + 1). If p
divided the first factor, then [g] would have order dividing p−1

2 ; thus p divides
the second factor, and we find g(p−1)/2 ≡ −1 mod p. Put x = g(p−1)/4; then
x2 ≡ −1 mod p.

Definition. We say that an integer g is a primitive root modulo m if the powers
of g generate all residue classes coprime to m. For example, 3 is a primitive
root modulo 7, but 2 is not.

Corollary 11.11. For every prime p there exist primitive roots.

Proof. Since Z/pZ is a finite field, the group (Z/pZ)× is cyclic, that is, there
exists an integer g of order p − 1; the powers of g generate the whole group
(Z/pZ)×.

Proposition 11.12. Let g be a primitive root modulo some odd prime p. Then
g(p−1)/2 ≡ −1 mod p; in particular, ( g

p ) = −1.

Proof. The square of g(p−1)/2 is ≡ 1 mod p by Fermat’s Little Theorem, hence
g(p−1)/2 = ±1. But if g(p−1)/2 = 1, then the powers of g generate at most p−1

2

elements, namely g0, g1, . . . , g(p−3)/2, contradicting our assumption that g be
a primitive root.

We also can see why (−1
p ) = +1 for primes p ≡ 1 mod 4: in this case, p−1 =

4m, and the integer j ≡ gm mod p has the property j2 ≡ g(p−1)/2 ≡ −1 mod p.

102



11.5 Gauss and Primitive Roots

Let me also give Gauss’s proof of the existence of primitive roots, stated slightly
more generally for abelian groups:

Theorem 11.13. Let G be a finite group. Assume that, for every divisor d of
n = #G, the equation xd = 1 has at most d solutions. Then G is cyclic.

Proof. Assume that d | n, and let ψ(d) denote the number of elements in G with
order d (thus for G = (Z/5Z)×, we have ψ(1) = 1, ψ(2) = 1, and ψ(4) = 2). If
ψ(d) 6= 0, then there is an element g ∈ G of order d, and then 1, g, g2, . . . , gd−1

are distinct solutions of the equation xd = 1 in G. By assumption, there are at
most that many solutions, hence these are all solutions of xd = 1.

Let us now determine the order of gk for 0 ≤ k < d. We claim that gk has
order d/ gcd(d, k). In fact, (gk)d/ gcd(d,k) = (gk/ gcd(d,k))d = 1, so the order of
gk divides d/ gcd(d, k). On the other hand, from 1 = (gk)m = gkm we deduce
that d | km, since d is the order of g. Dividing through by gcd(d, k) gives

d
gcd(d,k) |

k
gcd(d,k)m. But since d

gcd(d,k) and k
gcd(d,k) are coprime (we have divided

out the common factors), this implies that d
gcd(d,k) | m, which proves our claim.

Thus if g has order d, then there are exactly φ(d) elements of order d in
G, namely the gk with gcd(d, k) = 1. In other words: we have ψ(d) = 0 or
ψ(d) = φ(n).

Now clearly every element of g has some order, and this order divides n =
#G, hence n =

∑
d|n ψ(d). Next ψ(d) ≤ φ(d) implies that n =

∑
d|n ψ(d) ≤∑

d|n φ(d) = n, where we have used that
∑

d|n φ(d) = n. Taking this for granted
for a moment, we see that we must have equality in

∑
d|n ψ(d) ≤

∑
d|n φ(d).

But this happens if and only if ψ(d) = φ(d) for every d | n, and in particular
there exists an element of order n since ψ(n) = φ(n) ≥ 1.

Note that Gauss’s proof shows that there exist φ(p − 1) primitive roots
modulo p, since G = (Z/pZ)× has n = p− 1 elements.

Corollary 11.14. The multiplicative group F× of a finite field F is cyclic.

Proof. All we have to do is show that the equation xd = 1 has at most d solutions
in F×, but this is true in any field.

It remains to prove

Lemma 11.15. For every n ∈ N we have
∑

d|n φ(d) = n.

In fact, for n = 6 this says φ(1) + φ(2) + φ(3) + φ(6) = 1 + 1 + 2 + 2 = 6.

Proof. Consider the fractions 1
n , 2

n , . . . , n
n . For some d | n, how many of these

fractions have denominator d when written in lowest terms?
Clearly there will be φ(n) fractions with denominator n since these are ex-

actly the k
n with gcd(k, n) = 1.

Now assume that n = dm; the fraction k
n will have denominator d if and

only if k = mt and gcd(t, d) = 1. Clearly there are φ(d) such fractions.
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Thus among the n fractions, for each d | n there are φ(d) fractions with
denominator d, hence n =

∑
d|n φ(n).

11.6 Gauss’s 6th Proof of Quadratic Reciprocity

I can’t bring myself to omit giving a modern version of Gauss’s sixth proof of
the quadratic reciprocity law in Z based on the arithmetic of finite fields.

Let p and q be odd primes. By Fermat’s Little Theorem, qp−1 ≡ 1 mod p,
hence the multiplicative group F×n of the finite field Fn with n = qp−1 has n− 1
elements. Since Fn = Fq[X]/(f) for some irreducible polynomial of degree n,
we find that q = 0 in Fn; in particular, we have (a + b)q = aq + bq since the
binomial coefficients “in the middle” all vanish modulo q.

Let x be a generator of F×n ; then x has order n− 1, hence ζ := x(n−1)/p has
order p, i.e. ζ 6= 1 and ζp = 1. Now we form the Gauss sum

G =
p−1∑
a=1

(a
p

)
ζa.

Clearly G is an element of the finite field Fn.
In the special case p = 3 we find G = ζ − ζ2, where ζ3 = 1. Since 0 =

ζ3 − 1 = (ζ − 1)(ζ2 + ζ + 1) and since ζ 6= 1, we conclude that ζ2 + ζ + 1 = 0.
Now G2 = ζ2 − 2ζ3 + ζ4 = ζ2 + ζ − 2 = ζ2 + ζ + 1− 3 = −3.

We now derive the following properties of Gauss sums:

Proposition 11.16. Let G be the Gauss sum defined above. Then

1. Gq = ( q
p )G;

2. G2 = p∗, where p∗ = (−1
p )p.

This immediately implies the quadratic reciprocity law. In fact we find(q
p

)
= Gq−1 = (G2)

q−1
2 = (p∗)

q−1
2 =

(p∗
q

)
,

which in light of (p∗
q

)
=

(−1
p

) q−1
2

(p
q

)
= (−1)

p−1
2

q−1
2

(p
q

)
is the quadratic reciprocity law.

Proof of Prop. 11.16. We see

Gq =
( p−1∑

a=1

(a
p

)
ζa

)q

=
p−1∑
a=1

(a
p

)
ζaq

=
(q
p

) p−1∑
a=1

(aq
p

)
ζaq =

(q
p

) p−1∑
b=1

( b
p

)
ζb =

(q
p

)
G
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since (a
p )q = (a

p ), since (x+ y)q = xq + yq in any finite field containing Fq, and
since b = aq runs through a complete system of coprime residues modulo p if a
does.

The proof of the second claim is slightly more technical and requires the
following observation:

Lemma 11.17. For an odd prime p we have S =
p−1∑
c=1

(
c

p

)
= 0.

Proof. Let a be a quadratic non-residue mod p. Then

−S =
(
a

p

) p−1∑
c=1

(
c

p

)
=

p−1∑
c=1

(
ac

p

)
=

p−1∑
b=1

(
b

p

)
= S,

where we have used that b = ac runs through (Z/pZ)× if c does (this is because
different values of a give rise to different values of b: an equation ac = a′c implies
a = a′).

Now we find

G2 =
p−1∑
a=1

(
a

p

)
ζa ·

p−1∑
b=1

(
b

p

)
ζb =

∑
a,b

(
ab

p

)
ζa+b.

Now substitute b = ac; this yields

G2 =
∑
a,c

(
c

p

)
ζa+ac =

p−1∑
c=1

(
c

p

) p−1∑
a=1

(ζ1+c)a.

But if c 6= −1, then ζ1+c is a primitive p-th root of unity, and
∑p

a=1 ζ
a = 0

shows
∑p−1

a=1 ζ
a = −1, thus

G2 = −
p−2∑
c=1

(
c

p

)
+

(
−1
p

) p−1∑
a=1

1 = −
p−2∑
c=1

(
c

p

)
+ (p− 1)

(
−1
p

)

= p∗ −
p−1∑
c=1

(
c

p

)
= p∗.

This proof of the quadratic reciprocity law generalizes to cubic and quartic
residues; essentially you have to replace the Legendre symbol in the quadratic
Gauss sum by the cubic or quartic residue symbol [α

π ], the summation will
be over a complete system of residues modulo π, and the exponent a in ζa is
replaced by the integer α+α′. Then the analog of the first property holds, and
the second one is replaced by only slightly more complicated formulas.
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Exercises

11.1 Show that 2 is not a primitive root modulo primes p ≡ ±1 mod 8.

11.2 Find a prime p ≡ 3 mod 8 for which 2 is not a primitive root.

11.3 It is quite easy to state and prove Gauss’s Lemma for general finite cyclic groups
G of even order #G = 2m. Assume that g generates G.

1. Define −1 = gn. Show that (−1)2 = 1.

2. Show that an ∈ {−1, +1}.
3. Define a “Legendre symbol” ( a

G
) = ±1 via ( a

G
) = an. Show that a is a

square in G if and only if ( a
G

) = 1. (Hint: write a = gm for some m.)

4. Show that A = {1, g, g2, . . . , gn−1} defines a halfsystem, i.e. prove that
every g ∈ G has the property that either g ∈ A or −g ∈ A.

5. Write agi = (−1)s(i)gj for 0 ≤ i < n and let µ = s(0)+s(1)+ . . .+s(n−1).
Prove Gauss’s Lemma ( a

G
) = (−1)µ.

Applying this abstract result to the cyclic groups G = (Z/pZ)×, (Z[i]/πZ[i])×

and (Fp[X]/(P ))× now gives Gauss’s Lemma in the rings Z, Z[i] and Fp[X],
respectively.
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