Chapter 11

Finite Fields and Primitive Roots

$11.1 \quad \mathbb{F}_{p}[X]$

In this chapter we will construct and study finite fields; an important tool will be the polynomial ring $\mathbb{F}_{p}[X]$, where $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ is the finite field with p elements. We know that $\mathbb{F}_{p}[X]$ is Euclidean, hence a PID and a UFD.

When we regard $\mathbb{Z} / p \mathbb{Z}$ as a finite field \mathbb{F}_{p}, we usually omit the " $\bmod p$ ". Thus we simply write $-1=2$ in \mathbb{F}_{3} instead of $-1 \equiv 2 \bmod 3$. This is standard practice - don't let this abuse of language confuse you.

We know that the units in $R=\mathbb{F}_{p}[X]$ are the nonzero constants: $R^{\times}=\mathbb{F}_{p}^{\times}$. This is because $\operatorname{deg} f g=\operatorname{deg} f+\operatorname{deg} g$, so $f g=1$ implies $\operatorname{deg} f=\operatorname{deg} g=0$. In particular, every polynomial $f \in \mathbb{F}_{p}[X]$ is a unit times a monic polynomial.

Since linear polynomials $X+a$ for every $a \in \mathbb{F}_{p}$ are irreducible $(X+a=f g$ implies $1=\operatorname{deg} f+\operatorname{deg} g$, hence f or g is a unit), they are primes. In particular, the polynomials $X, X+1, \ldots, X+p-1$ are primes in $\mathbb{F}_{p}[X]$. Are there more? Of course, if $p \neq 2$, then $2 X, 2 X+1, \ldots, 2 X+p-1$ are also prime; but since e.g. $2 X+1=2\left(X+\frac{1}{2}\right)=2\left(X+\frac{p+1}{2}\right)$ differs from $X+\frac{p+1}{2}$ only by the unit 2 , we regard them as one and the same prime (just as in \mathbb{Z}, the primes 3 and -3 are counted as one).

In order to minimize the confusion, let us agree that a prime is a monic polynomial (just as we can define a prime in \mathbb{Z} to be positive). A more satisfying solution would be to talk about prime ideals instead of primes: in \mathbb{Z} we have $(5)=(-5)$, so 5 and -5 generate the same prime ideal (5), and in $\mathbb{F}_{p}[X]$ we have $(X+r)=(a X+a r)$ for all nonyero a.

Now we will answer the question whether $\mathbb{F}_{p}[X]$ contains infinitely many primes:

Proposition 11.1. There are infinitely many primes in $\mathbb{F}_{p}[x]$.
Proof. Assume that there are only finitely many, say $f_{1}=X, \ldots, f_{r}$. Then let
$F=f_{1} \cdots f_{r}+1$. Since $\operatorname{deg} F \geq 1$, this polynomial must have a prime factor f. Clearly $f \neq f_{j}$ since $f_{j} \mid F$ and $f_{j} \mid F-1$ would imply that $f_{j} \mid 1$. Thus f is a prime not on the list.

In $\mathbb{F}_{2}[X]$, the primes of degree 1 are X and $X+1$. In order to find a new one, take $F(X)=X(X+1)+1=X^{2}+X+1$, which is irreducible in $\mathbb{F}_{2}[X]$ and therefore a prime of degree 2 . If you do the same thing in $\mathbb{F}_{3}[X]$, then $F(X)=X^{2}+X+1$ is not irreducible since $F(X)=(X-1)^{2}$. but this gives you a new prime $X-1=X+2$. Repeating Euclid's argument gives $F(X)=X(X+1)(X-1)+1=X^{3}-X+1$, which is irreducible (since it cannot be divisible by any linear factor) and therefore prime.

Writing down primes explicitly is difficult. For example, $f(X)=X^{2}+1$ is prime in $\mathbb{F}_{3}[X]$ but not in $\mathbb{F}_{5}[x]$. In fact:
Proposition 11.2. Let p be an odd prime. Then $X^{2}+1$ is prime in $\mathbb{F}_{p}[X]$ if and only if $p \equiv 3 \bmod 4$.

Proof. If $p \equiv 1 \bmod 4$, then there is some $a \in \mathbb{F}_{p}$ with $\operatorname{ar} 2=-1$. Thus $X^{2}+1=$ $X^{2}-r^{2}=(X-r)(X+r)$ is reducible.

Now assume that $p \equiv 3 \bmod 4$. If $X^{2}+1=(X-r)(X-s)$, then $r+s=0$, hence $X^{2}+1=(X-r)(X+r)=X^{2}-r^{2}$. This implies $r^{2}=-1$, which is impossible in \mathbb{F}_{p} for primes $p \equiv 3 \bmod 4$.

This result should ring a bell: compare the factorizations of $X^{2}+1$ in $\mathbb{F}_{p}[X]$ with the factorizations of the principal ideal (p) in $\mathbb{Q}(i)$:

p	$\mathbb{F}_{p}[X]$	$\mathbb{Q}(i)$
2	$X^{2}+1=(X+1)^{2}$	$(2)=(1+i)^{2}$
$p \equiv 1 \bmod 4$	$X^{2}+1=(X-r)(X+r)$	$(p)=(a+b i)(a-b i)$
$p \equiv 3 \bmod 4$	$X^{2}+1=X^{2}+1$	$(p)=(p)$

This analogy will be explained in algebraic number theory.
Thus it is not obvious that there exist primes of degree 2 in every $\mathbb{F}_{p}[X]$. In fact, such primes always exist:

Proposition 11.3. There are exactly $\frac{p(p-1)}{2}$ irreducible quadratic polynomials in $\mathbb{F}_{p}[X]$.

Proof. There are exactly p^{2} monic polynomials $X^{2}+r X+s \in \mathbb{F}_{p}[X]$. The reducible polynomials among them have the form $(X-a)(X-b)$ for $a, b \in \mathbb{F}_{p}$. Recalling that $(X-a)(X-b)=(X-b)(X-a)$ we easily see that there are exactly $\binom{p}{2}$ polynomials with $a \neq b$ and p with $a=b$, hence there are $\frac{p(p+1)}{2}$ reducible polynomials. Thus there exist exactly $\frac{p(p-1)}{2}$ irreducible quadratic polynomials in $\mathbb{F}_{p}[X]$.

For example, $X^{2}+X+1$ is the unique prime of degree 2 in $\mathbb{F}_{2}[X]$, and the quadratic primes in $\mathbb{F}_{3}[X]$ are $X^{2}+1, X^{2}+X-1$ and $X^{2}-X-1$.

This argument can be generalized to count the number of primes of any given degree. In this way, Gauss proved

Proposition 11.4. For any prime p and any given $n>0$, there is an irreducible element $f \in \mathbb{F}_{p}[X]$ of degree n.

This is proved in abstract algebra.

11.2 Residue Classes modulo Polynomials

Now recall that $g \equiv h \bmod f$ if $f \mid(g-h)$. What can we say about the residue classes modulo f in $\mathbb{F}_{p}[X]$? Let us look at a few examples.

1. The ring $\mathbb{F}_{p}[X] /(X)$ has exactly p residue classes $0,1, \ldots, p-1$: in fact, since $X \equiv 0 \bmod X$ we have $a_{n} X^{n}+\ldots+a_{1} X+a_{0} \equiv a_{0} \bmod X$. Thus every polynomial is congruent to a constant modulo X. On the other hand, $a \equiv b \bmod X$ implies $a=b$, and the claim follows. The map sending the residue class $a \bmod p$ to $a \bmod X$ is a ring isomorphism: we have $\mathbb{F}_{p}[X] /(X) \simeq \mathbb{F}_{p}$.
More generally, $\mathbb{F}_{p}[X] /(X-a) \simeq \mathbb{F}_{p}$ for any $a \in \mathbb{F}_{p}$. Make sure you understand why $f(X) \equiv f(a) \bmod (X-a)$.
2. The ring $\mathbb{F}_{p}[X] /\left(X^{2}\right)$ has exactly p^{2} residue classes, namely $a+b X$ with $a, b \in \mathbb{F}_{p}$. Note that this is not a field since $X \cdot X \equiv 0 \bmod X^{2}$.
3. The ring $\mathbb{F}_{2}[X] /(f)$ for $\left.f(X)=X^{2}+X+1\right)$ has exactly 4 elements, namely the classes represented by $0,1, X$ and $X+1$. For example, $X^{3}=X \cdot X^{2} \equiv$ $X(-X-1)=X(X+1)=X^{2}+X=X-X-1=1 \bmod f$.
It is straightforward to compute an addition and multiplication table for the residue classes:

+	0	1	X	$X+1$
0	0	1	X	$X+1$
1	1	0	$X+1$	X
X	X	$X+1$	0	1
$X+1$	$X+1$	X	1	0
.	0	1	X	$X+1$
0	0	0	0	0
1	0	1	X	$X+1$
X	0	X	$X+1$	1
$X+1$	0	$X+1$	1	X

In general, there are exactly $N(f)=p^{\operatorname{deg} f}$ residue classes modulo f; they form a ring denoted by $\mathbb{F}_{p}[X] /(f)$. If you have a polynomial $f(X)=X^{n}+\ldots+$ $a_{1} X+a_{0} \in \mathbb{F}_{p}[X]$, then working modulo f works like this: observe that

$$
X^{n} \equiv-a_{n-1} X^{n-1}-\ldots-a_{1} X-a_{0} \bmod f
$$

allows you to reduce any polynomial $g \in \mathbb{F}_{p}[X]$ to some polynomial of degree $<\operatorname{deg} f$ by repeatedly applying this definition. For example, for $f(X)=X^{2}+1$ we get

$$
\begin{aligned}
X^{2} & \equiv-1 \bmod f \\
X^{3} & \equiv-X \bmod f \\
X^{4} & \equiv-X^{2} \equiv 1 \bmod f
\end{aligned}
$$

etc. In particular, every polynomial $g \in \mathbb{F}_{p}[X]$ is congruent modulo f to one of $S_{f}=\left\{b_{n-1} X^{n-1}+\ldots+b_{1} X+b_{0}: b_{j} \in \mathbb{F}_{p}\right\}$. Moreover, none of the polynomials in S_{f} are congruent modulo f : if $g_{i} \equiv g_{j} \bmod f$ for polynomials of degree $<\operatorname{deg} f$, then $f \mid\left(g_{i}-g_{j}\right)$, and since the polynomial on the right hand side has degree $<\operatorname{deg} f$, it must be 0 . This shows that S_{f} is a complete system of residue classes modulo f, and in particular it shows that there are exactly $p^{\operatorname{deg} f}$ residue classes modulo f.

Proposition 11.5. The ring $\mathbb{F}_{p}[X] /(f)$ of residue classes modulo f has exactly $p^{\operatorname{deg} f}$ elements.

The norm of f is by definition $N(f)=\# \mathbb{F}_{p}[X] /(f)$ (this is how you define the norm of ideals in algebraic number theory), and we have found that $N(f)=$ $p^{\operatorname{deg} f}$.

11.3 Finite Fields

Now recall that if f is a prime in $\mathbb{F}_{p}[X]$, then $\mathbb{F}_{p}[X] /(f)$ is a domain: in fact, if $a b \equiv 0 \bmod f$, then $f \mid a b$, hence $f \mid a$ or $f \mid b$, which in turn implies that $a \equiv 0 \bmod f$ or $b \equiv 0 \bmod f$. Since $\mathbb{F}_{p}[X] /(f)$ has $p^{\operatorname{deg} f}$ elements, it is a finite field. In abstract algebra you will see a proof that any finite field has p^{n} elements for some prime p and some integer $n \geq 1$, and that there is exactly one such field for each pair (p, n) up to isomorphism.

Proposition 11.6. Let K be a field. Then every polynomial $f \in K[X]$ has at most $\operatorname{deg} f$ roots.

Proof. Assume that f has the root $a \in K$. Then $f(a)=0$. Write $f(X)=$ $(X-a) g(X)+r(X)$ for some polynomial r with $\operatorname{deg} r<\operatorname{deg}(X-a)=1$. Then $\operatorname{deg} r=0$, hence $r(X)$ is a constant. Plugging in $X=a$ shows that $r=0$.

We have seen that if $f(a)=0$, then $f(X)=(X-a) g(X)$ for some polynomial g of degree $\operatorname{deg} g=\operatorname{deg} f-1$. If g has a root, we can continue in this way; since after at most $\operatorname{deg} f$ steps we reach a constant polynomial, we see that we can
write $f(X)=\left(X-a_{1}\right) \cdots\left(X-a_{r}\right) g(X)$, where g is a polynomial without roots in K. Now $f(a)=\left(a-a_{1}\right) \cdots\left(a-a_{r}\right) g(a)$. If a product in a field is zero, one of the factors is; thus if $f(a)=0$, then $a=a_{i}$ for some i, and the claim follows.

Note that the quadratic polynomial $X^{2}-1$ has four roots in $(\mathbb{Z} / 8 \mathbb{Z})[X]$, namely $X \equiv 1,3,5,7 \bmod 8$. Although we still can factor $f(X)=X^{2}-1=$ $(X-1)(X+1)$, this does not imply that $X=1$ and $X=-1$ are the only roots of f : in fact we have $f(3)=0$ even though none of the factors $3-1=2$ and $3+1=4$ are $\equiv 0 \bmod 8$. Also, f has the different factorizations $f(X)=$ $(X-1)(X+1)=(X-3)(X+3)$.

We now prove a generalization of the Theorem of Euler-Fermat:
Theorem 11.7 (Lagrange's Theorem). Let G be a finite abelian group of order $\# G=n$ (written multiplicatively). Then $g^{n}=1$.

For the group $G=(\mathbb{Z} / m \mathbb{Z})^{\times}$of coprime residue classes modulo m this is just the Theorem of Euler-Fermat. For the multiplicative group F^{\times}of a finite field with $n=q^{m}$ elements it means that $a^{n-1}=1$ for all $a \in F^{\times}$.

Proof. Write $G=\left\{g_{1}=1, g_{2}, \ldots, g_{n}\right\}$. Then

$$
\begin{gathered}
g \cdot g_{1}=h_{1}, \\
\ldots \ldots \\
g \cdot g_{n}=h_{n} .
\end{gathered}
$$

We now claim that $G=\left\{h_{1}, \ldots, h_{n}\right\}$. It is clearly sufficient to show that the h_{i} are pairwise distinct. But if $h_{i}=h_{j}$, then $g \cdot g_{i}=g \cdot g_{j}$, and multiplying through by g^{-1} we find $g_{i}=g_{j}$.

Multiplying these equations together shows that $g^{n} \prod g_{i}=\prod h_{i}$, and since $\prod g_{i}=\prod h_{i}$ we conclude that $g^{n}=1$.

We also can give an abstract version of Wilson's Theorem. In fact, let G be a finite abelian group with n elements, say $G=\left\{g_{1}=1, \ldots, g_{n}\right\}$. In groups, each element has an inverse, and we can form pairs $\left(g, g^{-1}\right)$. How often does it happen that $g=g^{-1}$? Elements with this property are solutions of the equation $g^{2}=1$. We claim that the elements with this property form a subgroup H of G. In fact, if $g^{2}=1$ and $h^{2}=1$, then $(g h)^{2}=g^{2} h^{2}=1$ since G is abelian. Moreover, if $g \in H$, then $g^{-1}=g i n H$.

By multiplying over pairs of inverse elements we see that $\prod_{g \in G \backslash H}=1$. Thus $\prod_{g \in G}=\prod_{g \in G \backslash H} \prod_{h \in H}=\prod_{h \in H}$.

This is in fact Wilson's theorem: if $G=(\mathbb{Z} / p \mathbb{Z})^{\times}$, then $H=\{+1,-1\}$, and we find $\prod_{g \in G} g=[-1]$. More generally, we have $H=\{-1,+1\}$ whenever $G=\mathbb{F}_{p}^{\times}$is the multiplicative group of a finite field. In fact, $g^{2}=1$ means $0=g^{2}-1=(g-1)(g+1)$, and in fields this implies $g=1$ or $g=-1$.

Note that there are groups in which $g^{2}=1$ has lots of solutions; in $G=$ $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$, for example, we have $g^{2}=1$ for each element since $a^{2} \equiv 1 \bmod 8$ whenever a is odd.

11.4 Primitive Roots

We now come to an extremely important theorem:
Theorem 11.8. The multiplicative group of any finite field is cyclic.
A finite group G is called cyclic if there is an element $g \in G$ such that every $h \in G$ is a power of g, i.e., such that $h=g^{n}$ for some integer n (if G is written multiplicatively) or $h=n g$ (if G is written additively). In such a case we say that G is generated by g.

Examples:

- A trivial example: The groups $\mathbb{Z} / m \mathbb{Z}$ are generated by the residue class $1 \bmod m$: every element of $\mathbb{Z} / m \mathbb{Z}$ has the form $n \equiv n \cdot 1 \bmod m$.
- The group $(\mathbb{Z} / 5 \mathbb{Z})^{\times}=\{1,2,3,4 \bmod 5\}$ is generated by $2 \bmod 5$ since $2 \equiv 2,2^{2} \equiv 4,2^{3} \equiv 3$ and $2^{4} \equiv 1 \bmod 5$. In our new notation this would read that $\mathbb{F}_{5}^{\times}=\{1,2,3,4\}$ is cyclic since $2^{1}=2,2^{2}=4,2^{3}=3$ and $2^{4}=1$ in \mathbb{F}_{5}.
- The group $(\mathbb{Z} / 8 \mathbb{Z})^{\times}$is not cyclic: each of the residue classes $1,3,5$, $7 \bmod 8$ does not generate the full group.

Since $(\mathbb{Z} / p \mathbb{Z})^{\times}$is the multiplicative group of the finite field $\mathbb{Z} / p \mathbb{Z}$, it is cyclic. Generators of $(\mathbb{Z} / p \mathbb{Z})^{\times}$are called primitive roots modulo p. For example, 2 is a primitive root modulo 5 , and 3 is a primitive root modulo 7 .

For the proof we a bit of information on the order of elements a in finite abelian groups G : this is the smallest positive integer r such that $a^{r}=1$.

Lemma 11.9. Let g be an element of order n in some finite abelian group G. If $g^{m}=1$, then $n \mid m$.

Proof. Write $m=q n+r$ with $0 \leq r<n$ (Euclidean division); then $1=g^{m}=$ $g^{q n+r}=q^{q n} g^{r}=g^{r}$. Since n is the minimal positive exponent with this property and $r<n$, we must have $r=0$. This proves the claim.

Lemma 11.10. If G is an abelian group, and if $a, b \in G$ are elements of order m and n respectively such that $\operatorname{gcd}(m, n)=1$, then ab has order $m n$.

Proof. Clearly $(a b)^{m n}=a^{m n} b^{m n}=\left(a^{m}\right)^{n}\left(b^{m}\right)^{n}=1$, so $a b$ has order dividing $m n$ (note that we have used commutativity here).

For the converse, let k denote the order of $m n$, that is the minimal integer k with $1 \leq k \leq m n$ such that $(a b)^{k}=1$; we have to show that $k=m n$.

From $(a b)^{k}=1$ we get $1=(a b)^{k m}=a^{k m} b^{k m}=b^{k m}$; hence $n \mid k m$ by Lemma 11.9, since $\operatorname{gcd}(n, m)=1$, we have $n \mid k$.

Exactly the same reasoning with the roles of a and b interchanged shows that $m \mid k$. But $\operatorname{gcd}(m, n)=1$, hence $n \mid k$ and $m \mid k$ imply that $m n \mid k$. Since $k \neq 0$, we conclude that $k \geq m n$, and this proves the claim.

Proof of Theorem 11.8 . Let $n=\# \mathbb{F}^{\times}$denote the number of elements of the finite abelian group F^{\times}. If $n=1$, the claim is trivial because $F^{\times}=\{1\}$ is clearly generated by 1 . If $n>1$, let p be a prime divisor of the order n of F^{\times}. Then there is an element $a \in F$ such that $a^{n / p} \neq 1$. For if not, then every $a \in F$ is a root of the polynomial $f(X)=X^{n / p}-1$; in particular, f has degree n / p and n roots. But polynomials f over fields can have at most $\operatorname{deg} f$ roots: contradiction.

Now let p^{r} be the exact power of a prime p that divides $n=\# F^{\times}$; then we claim that the element $x=a^{n / p^{r}}$ has order p^{r}. In fact, $x^{p^{r}}=a^{n}=1$ by Lagrange's Theorem (in the case that we are most interested in, namely $F=\mathbb{Z} / p \mathbb{Z}$, this is just Fermat's Little Theorem), so the order of x divides p^{r} by Lemma 11.9. If the order were smaller, then we would have $x^{p^{r-1}}=1$; but $x^{p^{r-1}}=a^{n / p} \neq 1$ by choice of a.

Now write $n=p_{1}^{r_{1}} \cdots p_{t}^{r_{t}}$. By the above, we can construct an element x_{i} of order $p_{i}^{r_{i}}$ for every $1 \leq i \leq t$. But then $x_{1} \cdots x_{t}$ has order n by Lemma 11.10 (use induction).

The fact that $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic can be used to give another proof of the fact that the congruence $x^{2} \equiv-1 \bmod p$ is solvable if $p \equiv 1 \bmod 4$: since $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic, there is an element $g \in \mathbb{Z}$ such that $[x]$ has order $p-1$. Thus $g^{p-1} \equiv 1 \bmod p$, hence $p \mid\left(g^{p-1}-1\right)=\left(g^{(p-1) / 2}-1\right)\left(g^{(p-1) / 2}+1\right)$. If p divided the first factor, then $[g]$ would have order dividing $\frac{p-1}{2}$; thus p divides the second factor, and we find $g^{(p-1) / 2} \equiv-1 \bmod p$. Put $x=g^{(p-1) / 4}$; then $x^{2} \equiv-1 \bmod p$.

Definition. We say that an integer g is a primitive root modulo m if the powers of g generate all residue classes coprime to m. For example, 3 is a primitive root modulo 7 , but 2 is not.

Corollary 11.11. For every prime p there exist primitive roots.
Proof. Since $\mathbb{Z} / p \mathbb{Z}$ is a finite field, the group $(\mathbb{Z} / p \mathbb{Z})^{\times}$is cyclic, that is, there exists an integer g of order $p-1$; the powers of g generate the whole group $(\mathbb{Z} / p \mathbb{Z})^{\times}$。

Proposition 11.12. Let g be a primitive root modulo some odd prime p. Then $g^{(p-1) / 2} \equiv-1 \bmod p$; in particular, $\left(\frac{g}{p}\right)=-1$.
Proof. The square of $g^{(p-1) / 2}$ is $\equiv 1 \bmod p$ by Fermat's Little Theorem, hence $g^{(p-1) / 2}= \pm 1$. But if $g^{(p-1) / 2}=1$, then the powers of g generate at most $\frac{p-1}{2}$ elements, namely $g^{0}, g^{1}, \ldots, g^{(p-3) / 2}$, contradicting our assumption that g be a primitive root.

We also can see why $\left(\frac{-1}{p}\right)=+1$ for primes $p \equiv 1 \bmod 4$: in this case, $p-1=$ $4 m$, and the integer $j \equiv g^{m} \bmod p$ has the property $j^{2} \equiv g^{(p-1) / 2} \equiv-1 \bmod p$.

11.5 Gauss and Primitive Roots

Let me also give Gauss's proof of the existence of primitive roots, stated slightly more generally for abelian groups:
Theorem 11.13. Let G be a finite group. Assume that, for every divisor d of $n=\# G$, the equation $x^{d}=1$ has at most d solutions. Then G is cyclic.
Proof. Assume that $d \mid n$, and let $\psi(d)$ denote the number of elements in G with order d (thus for $G=(\mathbb{Z} / 5 \mathbb{Z})^{\times}$, we have $\psi(1)=1, \psi(2)=1$, and $\psi(4)=2$). If $\psi(d) \neq 0$, then there is an element $g \in G$ of order d, and then $1, g, g^{2}, \ldots, g^{d-1}$ are distinct solutions of the equation $x^{d}=1$ in G. By assumption, there are at most that many solutions, hence these are all solutions of $x^{d}=1$.

Let us now determine the order of g^{k} for $0 \leq k<d$. We claim that g^{k} has order $d / \operatorname{gcd}(d, k)$. In fact, $\left(g^{k}\right)^{d / \operatorname{gcd}(d, k)}=\left(g^{k / \operatorname{gcd}(d, k)}\right)^{d}=1$, so the order of g^{k} divides $d / \operatorname{gcd}(d, k)$. On the other hand, from $1=\left(g^{k}\right)^{m}=g^{k m}$ we deduce that $d \mid k m$, since d is the order of g. Dividing through by $\operatorname{gcd}(d, k)$ gives $\frac{d}{\operatorname{gcd}(d, k)} \left\lvert\, \frac{k}{\operatorname{gcd}(d, k)} m\right.$. But since $\frac{d}{\operatorname{gcd}(d, k)}$ and $\frac{k}{\operatorname{gcd}(d, k)}$ are coprime (we have divided out the common factors), this implies that $\left.\frac{d}{\operatorname{gcd}(d, k)} \right\rvert\, m$, which proves our claim.

Thus if g has order d, then there are exactly $\phi(d)$ elements of order d in G, namely the g^{k} with $\operatorname{gcd}(d, k)=1$. In other words: we have $\psi(d)=0$ or $\psi(d)=\phi(n)$.

Now clearly every element of g has some order, and this order divides $n=$ $\# G$, hence $n=\sum_{d \mid n} \psi(d)$. Next $\psi(d) \leq \phi(d)$ implies that $n=\sum_{d \mid n} \psi(d) \leq$ $\sum_{d \mid n} \phi(d)=n$, where we have used that $\sum_{d \mid n} \phi(d)=n$. Taking this for granted for a moment, we see that we must have equality in $\sum_{d \mid n} \psi(d) \leq \sum_{d \mid n} \phi(d)$. But this happens if and only if $\psi(d)=\phi(d)$ for every $d \mid n$, and in particular there exists an element of order n since $\psi(n)=\phi(n) \geq 1$.

Note that Gauss's proof shows that there exist $\phi(p-1)$ primitive roots modulo p, since $G=(\mathbb{Z} / p \mathbb{Z})^{\times}$has $n=p-1$ elements.

Corollary 11.14. The multiplicative group F^{\times}of a finite field F is cyclic.
Proof. All we have to do is show that the equation $x^{d}=1$ has at most d solutions in F^{\times}, but this is true in any field.

It remains to prove
Lemma 11.15. For every $n \in \mathbb{N}$ we have $\sum_{d \mid n} \phi(d)=n$.
In fact, for $n=6$ this says $\phi(1)+\phi(2)+\phi(3)+\phi(6)=1+1+2+2=6$.
Proof. Consider the fractions $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}$. For some $d \mid n$, how many of these fractions have denominator d when written in lowest terms?

Clearly there will be $\phi(n)$ fractions with denominator n since these are exactly the $\frac{k}{n}$ with $\operatorname{gcd}(k, n)=1$.

Now assume that $n=d m$; the fraction $\frac{k}{n}$ will have denominator d if and only if $k=m t$ and $\operatorname{gcd}(t, d)=1$. Clearly there are $\phi(d)$ such fractions.

Thus among the n fractions, for each $d \mid n$ there are $\phi(d)$ fractions with denominator d, hence $n=\sum_{d \mid n} \phi(n)$.

11.6 Gauss's 6th Proof of Quadratic Reciprocity

I can't bring myself to omit giving a modern version of Gauss's sixth proof of the quadratic reciprocity law in \mathbb{Z} based on the arithmetic of finite fields.

Let p and q be odd primes. By Fermat's Little Theorem, $q^{p-1} \equiv 1 \bmod p$, hence the multiplicative group \mathbb{F}_{n}^{\times}of the finite field \mathbb{F}_{n} with $n=q^{p-1}$ has $n-1$ elements. Since $F_{n}=\mathbb{F}_{q}[X] /(f)$ for some irreducible polynomial of degree n, we find that $q=0$ in \mathbb{F}_{n}; in particular, we have $(a+b)^{q}=a^{q}+b^{q}$ since the binomial coefficients "in the middle" all vanish modulo q.

Let x be a generator of \mathbb{F}_{n}^{\times}; then x has order $n-1$, hence $\zeta:=x^{(n-1) / p}$ has order p, i.e. $\zeta \neq 1$ and $\zeta^{p}=1$. Now we form the Gauss sum

$$
G=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta^{a}
$$

Clearly G is an element of the finite field \mathbb{F}_{n}.
In the special case $p=3$ we find $G=\zeta-\zeta^{2}$, where $\zeta^{3}=1$. Since $0=$ $\zeta^{3}-1=(\zeta-1)\left(\zeta^{2}+\zeta+1\right)$ and since $\zeta \neq 1$, we conclude that $\zeta^{2}+\zeta+1=0$. Now $G^{2}=\zeta^{2}-2 \zeta^{3}+\zeta^{4}=\zeta^{2}+\zeta-2=\zeta^{2}+\zeta+1-3=-3$.

We now derive the following properties of Gauss sums:
Proposition 11.16. Let G be the Gauss sum defined above. Then

1. $G^{q}=\left(\frac{q}{p}\right) G$;
2. $G^{2}=p^{*}$, where $p^{*}=\left(\frac{-1}{p}\right) p$.

This immediately implies the quadratic reciprocity law. In fact we find

$$
\left(\frac{q}{p}\right)=G^{q-1}=\left(G^{2}\right)^{\frac{q-1}{2}}=\left(p^{*}\right)^{\frac{q-1}{2}}=\left(\frac{p^{*}}{q}\right)
$$

which in light of

$$
\left(\frac{p^{*}}{q}\right)=\left(\frac{-1}{p}\right)^{\frac{q-1}{2}}\left(\frac{p}{q}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}\left(\frac{p}{q}\right)
$$

is the quadratic reciprocity law.
Proof of Prop. 11.16. We see

$$
\begin{aligned}
G^{q} & =\left(\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta^{a}\right)^{q}=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta^{a q} \\
& =\left(\frac{q}{p}\right) \sum_{a=1}^{p-1}\left(\frac{a q}{p}\right) \zeta^{a q}=\left(\frac{q}{p}\right) \sum_{b=1}^{p-1}\left(\frac{b}{p}\right) \zeta^{b}=\left(\frac{q}{p}\right) G
\end{aligned}
$$

since $\left(\frac{a}{p}\right)^{q}=\left(\frac{a}{p}\right)$, since $(x+y)^{q}=x^{q}+y^{q}$ in any finite field containing \mathbb{F}_{q}, and since $b=a q$ runs through a complete system of coprime residues modulo p if a does.

The proof of the second claim is slightly more technical and requires the following observation:
Lemma 11.17. For an odd prime p we have $S=\sum_{c=1}^{p-1}\left(\frac{c}{p}\right)=0$.
Proof. Let a be a quadratic non-residue $\bmod p$. Then

$$
-S=\left(\frac{a}{p}\right) \sum_{c=1}^{p-1}\left(\frac{c}{p}\right)=\sum_{c=1}^{p-1}\left(\frac{a c}{p}\right)=\sum_{b=1}^{p-1}\left(\frac{b}{p}\right)=S
$$

where we have used that $b=a c$ runs through $(\mathbb{Z} / p \mathbb{Z})^{\times}$if c does (this is because different values of a give rise to different values of b : an equation $a c=a^{\prime} c$ implies $a=a^{\prime}$).

Now we find

$$
G^{2}=\sum_{a=1}^{p-1}\left(\frac{a}{p}\right) \zeta^{a} \cdot \sum_{b=1}^{p-1}\left(\frac{b}{p}\right) \zeta^{b}=\sum_{a, b}\left(\frac{a b}{p}\right) \zeta^{a+b}
$$

Now substitute $b=a c$; this yields

$$
G^{2}=\sum_{a, c}\left(\frac{c}{p}\right) \zeta^{a+a c}=\sum_{c=1}^{p-1}\left(\frac{c}{p}\right) \sum_{a=1}^{p-1}\left(\zeta^{1+c}\right)^{a}
$$

But if $c \neq-1$, then ζ^{1+c} is a primitive p-th root of unity, and $\sum_{a=1}^{p} \zeta^{a}=0$ shows $\sum_{a=1}^{p-1} \zeta^{a}=-1$, thus

$$
\begin{aligned}
G^{2} & =-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)+\left(\frac{-1}{p}\right) \sum_{a=1}^{p-1} 1=-\sum_{c=1}^{p-2}\left(\frac{c}{p}\right)+(p-1)\left(\frac{-1}{p}\right) \\
& =p^{*}-\sum_{c=1}^{p-1}\left(\frac{c}{p}\right)=p^{*}
\end{aligned}
$$

This proof of the quadratic reciprocity law generalizes to cubic and quartic residues; essentially you have to replace the Legendre symbol in the quadratic Gauss sum by the cubic or quartic residue symbol $\left[\frac{\alpha}{\pi}\right]$, the summation will be over a complete system of residues modulo π, and the exponent a in ζ^{a} is replaced by the integer $\alpha+\alpha^{\prime}$. Then the analog of the first property holds, and the second one is replaced by only slightly more complicated formulas.

Exercises

11.1 Show that 2 is not a primitive root modulo primes $p \equiv \pm 1 \bmod 8$.
11.2 Find a prime $p \equiv 3 \bmod 8$ for which 2 is not a primitive root.
11.3 It is quite easy to state and prove Gauss's Lemma for general finite cyclic groups G of even order $\# G=2 m$. Assume that g generates G.

1. Define $-1=g^{n}$. Show that $(-1)^{2}=1$.
2. Show that $a^{n} \in\{-1,+1\}$.
3. Define a "Legendre symbol" $\left(\frac{a}{G}\right)= \pm 1$ via $\left(\frac{a}{G}\right)=a^{n}$. Show that a is a square in G if and only if $\left(\frac{a}{G}\right)=1$. (Hint: write $a=g^{m}$ for some m.)
4. Show that $A=\left\{1, g, g^{2}, \ldots, g^{n-1}\right\}$ defines a halfsystem, i.e. prove that every $g \in G$ has the property that either $g \in A$ or $-g \in A$.
5. Write $a g^{i}=(-1)^{s(i)} g^{j}$ for $0 \leq i<n$ and let $\mu=s(0)+s(1)+\ldots+s(n-1)$. Prove Gauss's Lemma $\left(\frac{a}{G}\right)=(-1)^{\mu}$.

Applying this abstract result to the cyclic groups $G=(\mathbb{Z} / p \mathbb{Z})^{\times},(\mathbb{Z}[i] / \pi \mathbb{Z}[i])^{\times}$ and $\left(\mathbb{F}_{p}[X] /(P)\right)^{\times}$now gives Gauss's Lemma in the rings $\mathbb{Z}, \mathbb{Z}[i]$ and $\mathbb{F}_{p}[X]$, respectively.

