Chapter 11

Finite Fields and Primitive Roots

11.1 $\mathbb{F}_p[X]$

In this chapter we will construct and study finite fields; an important tool will be the polynomial ring $\mathbb{F}_p[X]$, where $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is the finite field with p elements. We know that $\mathbb{F}_p[X]$ is Euclidean, hence a PID and a UFD.

When we regard $\mathbb{Z}/p\mathbb{Z}$ as a finite field \mathbb{F}_p , we usually omit the "modp". Thus we simply write -1 = 2 in \mathbb{F}_3 instead of $-1 \equiv 2 \mod 3$. This is standard practice – don't let this abuse of language confuse you.

We know that the units in $R = \mathbb{F}_p[X]$ are the nonzero constants: $R^{\times} = \mathbb{F}_p^{\times}$. This is because deg $fg = \deg f + \deg g$, so fg = 1 implies deg $f = \deg g = 0$. In particular, every polynomial $f \in \mathbb{F}_p[X]$ is a unit times a monic polynomial.

Since linear polynomials X + a for every $a \in \mathbb{F}_p$ are irreducible (X + a = fg)implies $1 = \deg f + \deg g$, hence f or g is a unit), they are primes. In particular, the polynomials $X, X + 1, \ldots, X + p - 1$ are primes in $\mathbb{F}_p[X]$. Are there more? Of course, if $p \neq 2$, then $2X, 2X + 1, \ldots, 2X + p - 1$ are also prime; but since e.g. $2X + 1 = 2(X + \frac{1}{2}) = 2(X + \frac{p+1}{2})$ differs from $X + \frac{p+1}{2}$ only by the unit 2, we regard them as one and the same prime (just as in \mathbb{Z} , the primes 3 and -3are counted as one).

In order to minimize the confusion, let us agree that a prime is a monic polynomial (just as we can define a prime in \mathbb{Z} to be positive). A more satisfying solution would be to talk about prime ideals instead of primes: in \mathbb{Z} we have (5) = (-5), so 5 and -5 generate the same prime ideal (5), and in $\mathbb{F}_p[X]$ we have (X + r) = (aX + ar) for all nonyero a.

Now we will answer the question whether $\mathbb{F}_p[X]$ contains infinitely many primes:

Proposition 11.1. There are infinitely many primes in $\mathbb{F}_p[x]$.

Proof. Assume that there are only finitely many, say $f_1 = X, \ldots, f_r$. Then let

 $F = f_1 \cdots f_r + 1$. Since deg $F \ge 1$, this polynomial must have a prime factor f. Clearly $f \ne f_j$ since $f_j \mid F$ and $f_j \mid F - 1$ would imply that $f_j \mid 1$. Thus f is a prime not on the list.

In $\mathbb{F}_2[X]$, the primes of degree 1 are X and X + 1. In order to find a new one, take $F(X) = X(X+1) + 1 = X^2 + X + 1$, which is irreducible in $\mathbb{F}_2[X]$ and therefore a prime of degree 2. If you do the same thing in $\mathbb{F}_3[X]$, then $F(X) = X^2 + X + 1$ is not irreducible since $F(X) = (X - 1)^2$. but this gives you a new prime X - 1 = X + 2. Repeating Euclid's argument gives $F(X) = X(X+1)(X-1) + 1 = X^3 - X + 1$, which is irreducible (since it cannot be divisible by any linear factor) and therefore prime.

Writing down primes explicitly is difficult. For example, $f(X) = X^2 + 1$ is prime in $\mathbb{F}_3[X]$ but not in $\mathbb{F}_5[x]$. In fact:

Proposition 11.2. Let p be an odd prime. Then $X^2 + 1$ is prime in $\mathbb{F}_p[X]$ if and only if $p \equiv 3 \mod 4$.

Proof. If $p \equiv 1 \mod 4$, then there is some $a \in \mathbb{F}_p$ with $ar^2 = -1$. Thus $X^2 + 1 = X^2 - r^2 = (X - r)(X + r)$ is reducible.

Now assume that $p \equiv 3 \mod 4$. If $X^2 + 1 = (X - r)(X - s)$, then r + s = 0, hence $X^2 + 1 = (X - r)(X + r) = X^2 - r^2$. This implies $r^2 = -1$, which is impossible in \mathbb{F}_p for primes $p \equiv 3 \mod 4$.

This result should ring a bell: compare the factorizations of $X^2 + 1$ in $\mathbb{F}_p[X]$ with the factorizations of the principal ideal (p) in $\mathbb{Q}(i)$:

p	$\mathbb{F}_p[X]$	$\mathbb{Q}(i)$
2	$X^2 + 1 = (X + 1)^2$	$(2) = (1+i)^2$
$p\equiv 1 \bmod 4$	$X^{2} + 1 = (X - r)(X + r)$	(p) = (a+bi)(a-bi)
$p\equiv 3 \bmod 4$	$X^2 + 1 = X^2 + 1$	(p) = (p)

This analogy will be explained in algebraic number theory.

Thus it is not obvious that there exist primes of degree 2 in every $\mathbb{F}_p[X]$. In fact, such primes always exist:

Proposition 11.3. There are exactly $\frac{p(p-1)}{2}$ irreducible quadratic polynomials in $\mathbb{F}_p[X]$.

Proof. There are exactly p^2 monic polynomials $X^2 + rX + s \in \mathbb{F}_p[X]$. The reducible polynomials among them have the form (X - a)(X - b) for $a, b \in \mathbb{F}_p$. Recalling that (X - a)(X - b) = (X - b)(X - a) we easily see that there are exactly $\binom{p}{2}$ polynomials with $a \neq b$ and p with a = b, hence there are $\frac{p(p+1)}{2}$ reducible polynomials. Thus there exist exactly $\frac{p(p-1)}{2}$ irreducible quadratic polynomials in $\mathbb{F}_p[X]$. For example, $X^2 + X + 1$ is the unique prime of degree 2 in $\mathbb{F}_2[X]$, and the quadratic primes in $\mathbb{F}_3[X]$ are $X^2 + 1$, $X^2 + X - 1$ and $X^2 - X - 1$.

This argument can be generalized to count the number of primes of any given degree. In this way, Gauss proved

Proposition 11.4. For any prime p and any given n > 0, there is an irreducible element $f \in \mathbb{F}_p[X]$ of degree n.

This is proved in abstract algebra.

11.2 Residue Classes modulo Polynomials

Now recall that $g \equiv h \mod f$ if $f \mid (g - h)$. What can we say about the residue classes modulo f in $\mathbb{F}_p[X]$? Let us look at a few examples.

1. The ring $\mathbb{F}_p[X]/(X)$ has exactly p residue classes $0, 1, \ldots, p-1$: in fact, since $X \equiv 0 \mod X$ we have $a_n X^n + \ldots + a_1 X + a_0 \equiv a_0 \mod X$. Thus every polynomial is congruent to a constant modulo X. On the other hand, $a \equiv b \mod X$ implies a = b, and the claim follows. The map sending the residue class $a \mod p$ to $a \mod X$ is a ring isomorphism: we have $\mathbb{F}_p[X]/(X) \simeq \mathbb{F}_p$.

More generally, $\mathbb{F}_p[X]/(X-a) \simeq \mathbb{F}_p$ for any $a \in \mathbb{F}_p$. Make sure you understand why $f(X) \equiv f(a) \mod (X-a)$.

- 2. The ring $\mathbb{F}_p[X]/(X^2)$ has exactly p^2 residue classes, namely a + bX with $a, b \in \mathbb{F}_p$. Note that this is not a field since $X \cdot X \equiv 0 \mod X^2$.
- 3. The ring $\mathbb{F}_2[X]/(f)$ for $f(X) = X^2 + X + 1$ has exactly 4 elements, namely the classes represented by 0, 1, X and X+1. For example, $X^3 = X \cdot X^2 \equiv X(-X-1) = X(X+1) = X^2 + X = X X 1 = 1 \mod f$.

It is straightforward to compute an addition and multiplication table for the residue classes:

+	0	1	X	X + 1
0	0	1	X	X + 1
1	1	0	X + 1	X
X	X	X + 1	0	1
X + 1	X + 1	X	1	0
	0	1	X	X + 1
0	0	1 0	X 0	$\frac{X+1}{0}$
$\begin{array}{c} \cdot \\ \hline 0 \\ 1 \end{array}$	0 0 0	1 0 1	X 0 X	$\begin{array}{c} X+1\\ 0\\ X+1 \end{array}$
$\begin{array}{c} & \\ & 0 \\ & 1 \\ & X \end{array}$	0 0 0 0	1 0 1 X	$\begin{array}{c} X \\ 0 \\ X \\ X+1 \end{array}$	$\begin{array}{c} X+1 \\ 0 \\ X+1 \\ 1 \end{array}$

In general, there are exactly $N(f) = p^{\deg f}$ residue classes modulo f; they form a ring denoted by $\mathbb{F}_p[X]/(f)$. If you have a polynomial $f(X) = X^n + \ldots + a_1X + a_0 \in \mathbb{F}_p[X]$, then working modulo f works like this: observe that

$$X^n \equiv -a_{n-1}X^{n-1} - \ldots - a_1X - a_0 \mod f$$

allows you to reduce any polynomial $g \in \mathbb{F}_p[X]$ to some polynomial of degree $< \deg f$ by repeatedly applying this definition. For example, for $f(X) = X^2 + 1$ we get

$$\begin{aligned} X^2 &\equiv -1 \mod f, \\ X^3 &\equiv -X \mod f, \\ X^4 &\equiv -X^2 &\equiv 1 \mod f \end{aligned}$$

etc. In particular, every polynomial $g \in \mathbb{F}_p[X]$ is congruent modulo f to one of $S_f = \{b_{n-1}X^{n-1} + \ldots + b_1X + b_0 : b_j \in \mathbb{F}_p\}$. Moreover, none of the polynomials in S_f are congruent modulo f: if $g_i \equiv g_j \mod f$ for polynomials of degree $\langle \deg f, \operatorname{then} f \mid (g_i - g_j), \operatorname{and} \operatorname{since} \operatorname{the} \operatorname{polynomial}$ on the right hand side has degree $\langle \deg f, \operatorname{it} \operatorname{must} \operatorname{be} 0$. This shows that S_f is a complete system of residue classes modulo f, and in particular it shows that there are exactly $p^{\deg f}$ residue classes modulo f.

Proposition 11.5. The ring $\mathbb{F}_p[X]/(f)$ of residue classes modulo f has exactly $p^{\deg f}$ elements.

The norm of f is by definition $N(f) = \#\mathbb{F}_p[X]/(f)$ (this is how you define the norm of ideals in algebraic number theory), and we have found that $N(f) = p^{\deg f}$.

11.3 Finite Fields

Now recall that if f is a prime in $\mathbb{F}_p[X]$, then $\mathbb{F}_p[X]/(f)$ is a domain: in fact, if $ab \equiv 0 \mod f$, then $f \mid ab$, hence $f \mid a$ or $f \mid b$, which in turn implies that $a \equiv 0 \mod f$ or $b \equiv 0 \mod f$. Since $\mathbb{F}_p[X]/(f)$ has $p^{\deg f}$ elements, it is a finite field. In abstract algebra you will see a proof that any finite field has p^n elements for some prime p and some integer $n \geq 1$, and that there is exactly one such field for each pair (p, n) up to isomorphism.

Proposition 11.6. Let K be a field. Then every polynomial $f \in K[X]$ has at most deg f roots.

Proof. Assume that f has the root $a \in K$. Then f(a) = 0. Write f(X) = (X-a)g(X) + r(X) for some polynomial r with deg r < deg(X-a) = 1. Then deg r = 0, hence r(X) is a constant. Plugging in X = a shows that r = 0.

We have seen that if f(a) = 0, then f(X) = (X-a)g(X) for some polynomial g of degree deg g = deg f - 1. If g has a root, we can continue in this way; since after at most deg f steps we reach a constant polynomial, we see that we can

write $f(X) = (X - a_1) \cdots (X - a_r)g(X)$, where g is a polynomial without roots in K. Now $f(a) = (a - a_1) \cdots (a - a_r)g(a)$. If a product in a field is zero, one of the factors is; thus if f(a) = 0, then $a = a_i$ for some i, and the claim follows. \Box

Note that the quadratic polynomial $X^2 - 1$ has four roots in $(\mathbb{Z}/8\mathbb{Z})[X]$, namely $X \equiv 1, 3, 5, 7 \mod 8$. Although we still can factor $f(X) = X^2 - 1 = (X - 1)(X + 1)$, this does not imply that X = 1 and X = -1 are the only roots of f: in fact we have f(3) = 0 even though none of the factors 3 - 1 = 2and 3 + 1 = 4 are $\equiv 0 \mod 8$. Also, f has the different factorizations f(X) = (X - 1)(X + 1) = (X - 3)(X + 3).

We now prove a generalization of the Theorem of Euler-Fermat:

Theorem 11.7 (Lagrange's Theorem). Let G be a finite abelian group of order #G = n (written multiplicatively). Then $g^n = 1$.

For the group $G = (\mathbb{Z}/m\mathbb{Z})^{\times}$ of coprime residue classes modulo m this is just the Theorem of Euler-Fermat. For the multiplicative group F^{\times} of a finite field with $n = q^m$ elements it means that $a^{n-1} = 1$ for all $a \in F^{\times}$.

Proof. Write $G = \{g_1 = 1, g_2, \dots, g_n\}$. Then

$$g \cdot g_1 = h_1,$$
$$\dots$$
$$g \cdot g_n = h_n.$$

We now claim that $G = \{h_1, \ldots, h_n\}$. It is clearly sufficient to show that the h_i are pairwise distinct. But if $h_i = h_j$, then $g \cdot g_i = g \cdot g_j$, and multiplying through by g^{-1} we find $g_i = g_j$.

Multiplying these equations together shows that $g^n \prod g_i = \prod h_i$, and since $\prod g_i = \prod h_i$ we conclude that $g^n = 1$.

We also can give an abstract version of Wilson's Theorem. In fact, let G be a finite abelian group with n elements, say $G = \{g_1 = 1, \ldots, g_n\}$. In groups, each element has an inverse, and we can form pairs (g, g^{-1}) . How often does it happen that $g = g^{-1}$? Elements with this property are solutions of the equation $g^2 = 1$. We claim that the elements with this property form a subgroup H of G. In fact, if $g^2 = 1$ and $h^2 = 1$, then $(gh)^2 = g^2h^2 = 1$ since G is abelian. Moreover, if $g \in H$, then $g^{-1} = g inH$.

By multiplying over pairs of inverse elements we see that $\prod_{g \in G \setminus H} = 1$. Thus $\prod_{g \in G} = \prod_{g \in G \setminus H} \prod_{h \in H} = \prod_{h \in H}$.

This is in fact Wilson's theorem: if $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$, then $H = \{+1, -1\}$, and we find $\prod_{g \in G} g = [-1]$. More generally, we have $H = \{-1, +1\}$ whenever $G = \mathbb{F}_p^{\times}$ is the multiplicative group of a finite field. In fact, $g^2 = 1$ means $0 = g^2 - 1 = (g - 1)(g + 1)$, and in fields this implies g = 1 or g = -1.

Note that there are groups in which $g^2 = 1$ has lots of solutions; in $G = (\mathbb{Z}/8\mathbb{Z})^{\times}$, for example, we have $g^2 = 1$ for each element since $a^2 \equiv 1 \mod 8$ whenever a is odd.

11.4 Primitive Roots

We now come to an extremely important theorem:

Theorem 11.8. The multiplicative group of any finite field is cyclic.

A finite group G is called cyclic if there is an element $g \in G$ such that every $h \in G$ is a power of g, i.e., such that $h = g^n$ for some integer n (if G is written multiplicatively) or h = ng (if G is written additively). In such a case we say that G is generated by g.

Examples:

- A trivial example: The groups $\mathbb{Z}/m\mathbb{Z}$ are generated by the residue class 1 mod m: every element of $\mathbb{Z}/m\mathbb{Z}$ has the form $n \equiv n \cdot 1 \mod m$.
- The group $(\mathbb{Z}/5\mathbb{Z})^{\times} = \{1, 2, 3, 4 \mod 5\}$ is generated by 2 mod 5 since $2 \equiv 2, 2^2 \equiv 4, 2^3 \equiv 3$ and $2^4 \equiv 1 \mod 5$. In our new notation this would read that $\mathbb{F}_5^{\times} = \{1, 2, 3, 4\}$ is cyclic since $2^1 = 2, 2^2 = 4, 2^3 = 3$ and $2^4 = 1$ in \mathbb{F}_5 .
- The group $(\mathbb{Z}/8\mathbb{Z})^{\times}$ is not cyclic: each of the residue classes 1, 3, 5, 7 mod 8 does not generate the full group.

Since $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is the multiplicative group of the finite field $\mathbb{Z}/p\mathbb{Z}$, it is cyclic. Generators of $(\mathbb{Z}/p\mathbb{Z})^{\times}$ are called primitive roots modulo p. For example, 2 is a primitive root modulo 5, and 3 is a primitive root modulo 7.

For the proof we a bit of information on the order of elements a in finite abelian groups G: this is the smallest positive integer r such that $a^r = 1$.

Lemma 11.9. Let g be an element of order n in some finite abelian group G. If $g^m = 1$, then $n \mid m$.

Proof. Write m = qn + r with $0 \le r < n$ (Euclidean division); then $1 = g^m = g^{qn+r} = q^{qn}g^r = g^r$. Since *n* is the minimal positive exponent with this property and r < n, we must have r = 0. This proves the claim.

Lemma 11.10. If G is an abelian group, and if $a, b \in G$ are elements of order m and n respectively such that gcd(m, n) = 1, then ab has order mn.

Proof. Clearly $(ab)^{mn} = a^{mn}b^{mn} = (a^m)^n(b^m)^n = 1$, so ab has order dividing mn (note that we have used commutativity here).

For the converse, let k denote the order of mn, that is the minimal integer k with $1 \le k \le mn$ such that $(ab)^k = 1$; we have to show that k = mn.

From $(ab)^k = 1$ we get $1 = (ab)^{km} = a^{km}b^{km} = b^{km}$; hence $n \mid km$ by Lemma 11.9; since gcd(n,m) = 1, we have $n \mid k$.

Exactly the same reasoning with the roles of a and b interchanged shows that $m \mid k$. But gcd(m, n) = 1, hence $n \mid k$ and $m \mid k$ imply that $mn \mid k$. Since $k \neq 0$, we conclude that $k \geq mn$, and this proves the claim.

Proof of Theorem 11.8. Let $n = \#\mathbb{F}^{\times}$ denote the number of elements of the finite abelian group F^{\times} . If n = 1, the claim is trivial because $F^{\times} = \{1\}$ is clearly generated by 1. If n > 1, let p be a prime divisor of the order n of F^{\times} . Then there is an element $a \in F$ such that $a^{n/p} \neq 1$. For if not, then every $a \in F$ is a root of the polynomial $f(X) = X^{n/p} - 1$; in particular, f has degree n/p and n roots. But polynomials f over fields can have at most deg f roots: contradiction.

Now let p^r be the exact power of a prime p that divides $n = \#F^{\times}$; then we claim that the element $x = a^{n/p^r}$ has order p^r . In fact, $x^{p^r} = a^n = 1$ by Lagrange's Theorem (in the case that we are most interested in, namely $F = \mathbb{Z}/p\mathbb{Z}$, this is just Fermat's Little Theorem), so the order of x divides p^r by Lemma 11.9. If the order were smaller, then we would have $x^{p^{r-1}} = 1$; but $x^{p^{r-1}} = a^{n/p} \neq 1$ by choice of a.

Now write $n = p_1^{r_1} \cdots p_t^{r_t}$. By the above, we can construct an element x_i of order $p_i^{r_i}$ for every $1 \le i \le t$. But then $x_1 \cdots x_t$ has order n by Lemma 11.10 (use induction).

The fact that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic can be used to give another proof of the fact that the congruence $x^2 \equiv -1 \mod p$ is solvable if $p \equiv 1 \mod 4$: since $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic, there is an element $g \in \mathbb{Z}$ such that [x] has order p-1. Thus $g^{p-1} \equiv 1 \mod p$, hence $p \mid (g^{p-1}-1) = (g^{(p-1)/2}-1)(g^{(p-1)/2}+1)$. If p divided the first factor, then [g] would have order dividing $\frac{p-1}{2}$; thus p divides the second factor, and we find $g^{(p-1)/2} \equiv -1 \mod p$. Put $x = g^{(p-1)/4}$; then $x^2 \equiv -1 \mod p$.

Definition. We say that an integer g is a primitive root modulo m if the powers of g generate all residue classes coprime to m. For example, 3 is a primitive root modulo 7, but 2 is not.

Corollary 11.11. For every prime p there exist primitive roots.

Proof. Since $\mathbb{Z}/p\mathbb{Z}$ is a finite field, the group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic, that is, there exists an integer g of order p-1; the powers of g generate the whole group $(\mathbb{Z}/p\mathbb{Z})^{\times}$.

Proposition 11.12. Let g be a primitive root modulo some odd prime p. Then $g^{(p-1)/2} \equiv -1 \mod p$; in particular, $\left(\frac{g}{p}\right) = -1$.

Proof. The square of $g^{(p-1)/2}$ is $\equiv 1 \mod p$ by Fermat's Little Theorem, hence $g^{(p-1)/2} = \pm 1$. But if $g^{(p-1)/2} = 1$, then the powers of g generate at most $\frac{p-1}{2}$ elements, namely $g^0, g^1, \ldots, g^{(p-3)/2}$, contradicting our assumption that g be a primitive root.

We also can see why $\left(\frac{-1}{p}\right) = +1$ for primes $p \equiv 1 \mod 4$: in this case, p-1 = 4m, and the integer $j \equiv g^m \mod p$ has the property $j^2 \equiv g^{(p-1)/2} \equiv -1 \mod p$.

11.5 Gauss and Primitive Roots

Let me also give Gauss's proof of the existence of primitive roots, stated slightly more generally for abelian groups:

Theorem 11.13. Let G be a finite group. Assume that, for every divisor d of n = #G, the equation $x^d = 1$ has at most d solutions. Then G is cyclic.

Proof. Assume that $d \mid n$, and let $\psi(d)$ denote the number of elements in G with order d (thus for $G = (\mathbb{Z}/5\mathbb{Z})^{\times}$, we have $\psi(1) = 1$, $\psi(2) = 1$, and $\psi(4) = 2$). If $\psi(d) \neq 0$, then there is an element $g \in G$ of order d, and then 1, g, g^2, \ldots, g^{d-1} are distinct solutions of the equation $x^d = 1$ in G. By assumption, there are at most that many solutions, hence these are all solutions of $x^d = 1$.

Let us now determine the order of g^k for $0 \le k < d$. We claim that g^k has order $d/\gcd(d,k)$. In fact, $(g^k)^{d/\gcd(d,k)} = (g^{k/\gcd(d,k)})^d = 1$, so the order of g^k divides $d/\gcd(d,k)$. On the other hand, from $1 = (g^k)^m = g^{km}$ we deduce that $d \mid km$, since d is the order of g. Dividing through by $\gcd(d,k)$ gives $\frac{d}{\gcd(d,k)} \mid \frac{k}{\gcd(d,k)}m$. But since $\frac{d}{\gcd(d,k)}$ and $\frac{k}{\gcd(d,k)}$ are coprime (we have divided out the common factors), this implies that $\frac{d}{\gcd(d,k)} \mid m$, which proves our claim.

Thus if g has order d, then there are exactly $\phi(d)$ elements of order d in G, namely the g^k with gcd(d, k) = 1. In other words: we have $\psi(d) = 0$ or $\psi(d) = \phi(n)$.

Now clearly every element of g has some order, and this order divides n = #G, hence $n = \sum_{d|n} \psi(d)$. Next $\psi(d) \leq \phi(d)$ implies that $n = \sum_{d|n} \psi(d) \leq \sum_{d|n} \phi(d) = n$, where we have used that $\sum_{d|n} \phi(d) = n$. Taking this for granted for a moment, we see that we must have equality in $\sum_{d|n} \psi(d) \leq \sum_{d|n} \phi(d)$. But this happens if and only if $\psi(d) = \phi(d)$ for every $d \mid n$, and in particular there exists an element of order n since $\psi(n) = \phi(n) \geq 1$.

Note that Gauss's proof shows that there exist $\phi(p-1)$ primitive roots modulo p, since $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$ has n = p - 1 elements.

Corollary 11.14. The multiplicative group F^{\times} of a finite field F is cyclic.

Proof. All we have to do is show that the equation $x^d = 1$ has at most d solutions in F^{\times} , but this is true in any field.

It remains to prove

Lemma 11.15. For every $n \in \mathbb{N}$ we have $\sum_{d|n} \phi(d) = n$.

In fact, for n = 6 this says $\phi(1) + \phi(2) + \phi(3) + \phi(6) = 1 + 1 + 2 + 2 = 6$.

Proof. Consider the fractions $\frac{1}{n}$, $\frac{2}{n}$, ..., $\frac{n}{n}$. For some $d \mid n$, how many of these fractions have denominator d when written in lowest terms?

Clearly there will be $\phi(n)$ fractions with denominator n since these are exactly the $\frac{k}{n}$ with gcd(k, n) = 1.

Now assume that n = dm; the fraction $\frac{k}{n}$ will have denominator d if and only if k = mt and gcd(t, d) = 1. Clearly there are $\phi(d)$ such fractions.

Thus among the *n* fractions, for each $d \mid n$ there are $\phi(d)$ fractions with denominator *d*, hence $n = \sum_{d \mid n} \phi(n)$.

11.6 Gauss's 6th Proof of Quadratic Reciprocity

I can't bring myself to omit giving a modern version of Gauss's sixth proof of the quadratic reciprocity law in \mathbb{Z} based on the arithmetic of finite fields.

Let p and q be odd primes. By Fermat's Little Theorem, $q^{p-1} \equiv 1 \mod p$, hence the multiplicative group \mathbb{F}_n^{\times} of the finite field \mathbb{F}_n with $n = q^{p-1}$ has n-1elements. Since $F_n = \mathbb{F}_q[X]/(f)$ for some irreducible polynomial of degree n, we find that q = 0 in \mathbb{F}_n ; in particular, we have $(a + b)^q = a^q + b^q$ since the binomial coefficients "in the middle" all vanish modulo q.

Let x be a generator of \mathbb{F}_n^{\times} ; then x has order n-1, hence $\zeta := x^{(n-1)/p}$ has order p, i.e. $\zeta \neq 1$ and $\zeta^p = 1$. Now we form the Gauss sum

$$G = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^a.$$

Clearly G is an element of the finite field \mathbb{F}_n .

In the special case p = 3 we find $G = \zeta - \zeta^2$, where $\zeta^3 = 1$. Since $0 = \zeta^3 - 1 = (\zeta - 1)(\zeta^2 + \zeta + 1)$ and since $\zeta \neq 1$, we conclude that $\zeta^2 + \zeta + 1 = 0$. Now $G^2 = \zeta^2 - 2\zeta^3 + \zeta^4 = \zeta^2 + \zeta - 2 = \zeta^2 + \zeta + 1 - 3 = -3$.

We now derive the following properties of Gauss sums:

Proposition 11.16. Let G be the Gauss sum defined above. Then

- 1. $G^q = (\frac{q}{n})G;$
- 2. $G^2 = p^*$, where $p^* = (\frac{-1}{n})p$.

This immediately implies the quadratic reciprocity law. In fact we find

$$\left(\frac{q}{p}\right) = G^{q-1} = (G^2)^{\frac{q-1}{2}} = (p^*)^{\frac{q-1}{2}} = \left(\frac{p^*}{q}\right),$$

which in light of

$$\left(\frac{p^*}{q}\right) = \left(\frac{-1}{p}\right)^{\frac{q-1}{2}} \left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2}\frac{q-1}{2}} \left(\frac{p}{q}\right)$$

is the quadratic reciprocity law.

Proof of Prop. 11.16. We see

$$G^{q} = \left(\sum_{a=1}^{p-1} \left(\frac{a}{p}\right)\zeta^{a}\right)^{q} = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right)\zeta^{aq}$$
$$= \left(\frac{q}{p}\right)\sum_{a=1}^{p-1} \left(\frac{aq}{p}\right)\zeta^{aq} = \left(\frac{q}{p}\right)\sum_{b=1}^{p-1} \left(\frac{b}{p}\right)\zeta^{b} = \left(\frac{q}{p}\right)G$$

since $(\frac{a}{p})^q = (\frac{a}{p})$, since $(x + y)^q = x^q + y^q$ in any finite field containing \mathbb{F}_q , and since b = aq runs through a complete system of coprime residues modulo p if a does.

The proof of the second claim is slightly more technical and requires the following observation:

Lemma 11.17. For an odd prime *p* we have $S = \sum_{c=1}^{p-1} \left(\frac{c}{p}\right) = 0.$

Proof. Let a be a quadratic non-residue mod p. Then

$$-S = \left(\frac{a}{p}\right) \sum_{c=1}^{p-1} \left(\frac{c}{p}\right) = \sum_{c=1}^{p-1} \left(\frac{ac}{p}\right) = \sum_{b=1}^{p-1} \left(\frac{b}{p}\right) = S,$$

where we have used that b = ac runs through $(\mathbb{Z}/p\mathbb{Z})^{\times}$ if c does (this is because different values of a give rise to different values of b: an equation ac = a'c implies a = a').

Now we find

$$G^{2} = \sum_{a=1}^{p-1} \left(\frac{a}{p}\right) \zeta^{a} \cdot \sum_{b=1}^{p-1} \left(\frac{b}{p}\right) \zeta^{b} = \sum_{a,b} \left(\frac{ab}{p}\right) \zeta^{a+b}.$$

Now substitute b = ac; this yields

$$G^{2} = \sum_{a,c} \left(\frac{c}{p}\right) \zeta^{a+ac} = \sum_{c=1}^{p-1} \left(\frac{c}{p}\right) \sum_{a=1}^{p-1} (\zeta^{1+c})^{a}.$$

But if $c \neq -1$, then ζ^{1+c} is a primitive *p*-th root of unity, and $\sum_{a=1}^{p} \zeta^{a} = 0$ shows $\sum_{a=1}^{p-1} \zeta^{a} = -1$, thus

$$G^{2} = -\sum_{c=1}^{p-2} \left(\frac{c}{p}\right) + \left(\frac{-1}{p}\right) \sum_{a=1}^{p-1} 1 = -\sum_{c=1}^{p-2} \left(\frac{c}{p}\right) + (p-1)\left(\frac{-1}{p}\right)$$
$$= p^{*} - \sum_{c=1}^{p-1} \left(\frac{c}{p}\right) = p^{*}.$$

This proof of the quadratic reciprocity law generalizes to cubic and quartic residues; essentially you have to replace the Legendre symbol in the quadratic Gauss sum by the cubic or quartic residue symbol $\left[\frac{\alpha}{\pi}\right]$, the summation will be over a complete system of residues modulo π , and the exponent a in ζ^a is replaced by the integer $\alpha + \alpha'$. Then the analog of the first property holds, and the second one is replaced by only slightly more complicated formulas.

Exercises

- 11.1 Show that 2 is not a primitive root modulo primes $p \equiv \pm 1 \mod 8$.
- 11.2 Find a prime $p \equiv 3 \mod 8$ for which 2 is not a primitive root.
- 11.3 It is quite easy to state and prove Gauss's Lemma for general finite cyclic groups G of even order #G = 2m. Assume that g generates G.
 - 1. Define $-1 = g^n$. Show that $(-1)^2 = 1$.
 - 2. Show that $a^n \in \{-1, +1\}$.
 - 3. Define a "Legendre symbol" $(\frac{a}{G}) = \pm 1$ via $(\frac{a}{G}) = a^n$. Show that a is a square in G if and only if $(\frac{a}{G}) = 1$. (Hint: write $a = g^m$ for some m.)
 - 4. Show that $A = \{1, g, g^2, \dots, g^{n-1}\}$ defines a half system, i.e. prove that every $g \in G$ has the property that either $g \in A$ or $-g \in A$.
 - 5. Write $ag^i = (-1)^{s(i)}g^j$ for $0 \le i < n$ and let $\mu = s(0) + s(1) + \ldots + s(n-1)$. Prove Gauss's Lemma $\left(\frac{a}{G}\right) = (-1)^{\mu}$.

Applying this abstract result to the cyclic groups $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$, $(\mathbb{Z}[i]/\pi\mathbb{Z}[i])^{\times}$ and $(\mathbb{F}_p[X]/(P))^{\times}$ now gives Gauss's Lemma in the rings \mathbb{Z} , $\mathbb{Z}[i]$ and $\mathbb{F}_p[X]$, respectively.