Chapter 11

Finite Fields and Primitive
Roots

11.1  F,[X]

In this chapter we will construct and study finite fields; an important tool will be
the polynomial ring F,[X], where F,, = Z/pZ is the finite field with p elements.
We know that F,[X] is Euclidean, hence a PID and a UFD.

When we regard Z/pZ as a finite field F),, we usually omit the “modp”.
Thus we simply write —1 = 2 in F3 instead of —1 = 2 mod 3. This is standard
practice — don’t let this abuse of language confuse you.

We know that the units in R = [F,[X] are the nonzero constants: R* = F.
This is because deg fg = deg f + degg, so fg = 1 implies deg f = degg = 0. In
particular, every polynomial f € IF,[X] is a unit times a monic polynomial.

Since linear polynomials X + a for every a € F, are irreducible (X +a = fg
implies 1 = deg f +deg g, hence f or g is a unit), they are primes. In particular,
the polynomials X, X +1, ..., X +p—1 are primes in F,[X]. Are there more?
Of course, if p # 2, then 2X, 2X + 1, ..., 2X 4+ p — 1 are also prime; but since
eg 2X+1=2(X+3)=2(X+ pTH) differs from X + pTH only by the unit 2,
we regard them as one and the same prime (just as in Z, the primes 3 and —3
are counted as one).

In order to minimize the confusion, let us agree that a prime is a monic
polynomial (just as we can define a prime in Z to be positive). A more satisfying
solution would be to talk about prime ideals instead of primes: in Z we have
(5) = (—5), so 5 and —b generate the same prime ideal (5), and in F,[X] we
have (X +r) = (aX + ar) for all nonyero a.

Now we will answer the question whether F,[X] contains infinitely many
primes:

Proposition 11.1. There are infinitely many primes in F,[x].

Proof. Assume that there are only finitely many, say fi = X, ..., f.. Then let
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F=f - f.+1. Since deg F' > 1, this polynomial must have a prime factor f.
Clearly f # f; since f; | F and f; | F — 1 would imply that f; | 1. Thus f is a
prime not on the list. U

In Fo[X], the primes of degree 1 are X and X + 1. In order to find a
new one, take F(X) = X(X +1) +1 = X2 + X + 1, which is irreducible in
Fo[X] and therefore a prime of degree 2. If you do the same thing in F3[X],
then F(X) = X? + X + 1 is not irreducible since F(X) = (X — 1)2. but this
gives you a new prime X — 1 = X 4 2. Repeating Euclid’s argument gives
F(X) = X(X+1)(X —1)+1= X3— X + 1, which is irreducible (since it
cannot be divisible by any linear factor) and therefore prime.

Writing down primes explicitly is difficult. For example, f(X) = X2 + 1 is
prime in F3[X] but not in F5[z]. In fact:

Proposition 11.2. Let p be an odd prime. Then X? + 1 is prime in F,[X] if
and only if p = 3 mod 4.

Proof. If p=1 mod 4, then there is some a € F,, with ar2 = —1. Thus X?+1 =
X2 —r?2 = (X —r)(X +r) is reducible.

Now assume that p =3 mod 4. If X? +1 = (X —r)(X —s), thenr + s =0,
hence X2+ 1 = (X —r)(X +7) = X2 — 72, This implies r?> = —1, which is
impossible in [, for primes p = 3 mod 4. O

This result should ring a bell: compare the factorizations of X% +1 in F,[X]
with the factorizations of the principal ideal (p) in Q(7):

p Fp[X] | Q)

2 X2 4+1=(X+1)? (2) = (1+414)?
p=1lmod4 | X2 +1=(X—7r)(X+7) | (p) = (a+bi)(a— bi)
p=3mod4 X2 +1=X%+1 (p) = (p)

This analogy will be explained in algebraic number theory.
Thus it is not obvious that there exist primes of degree 2 in every F,[X]. In
fact, such primes always exist:

p(p—1)
2

Proposition 11.3. There are exactly wrreducible quadratic polynomials

in Fp[X].

Proof. There are exactly p? monic polynomials X2 + rX + s € F,[X]. The
reducible polynomials among them have the form (X — a)(X — b) for a,b € F,,.
Recalling that (X — a)(X —b) = (X — b)(X — a) we easily see that there are

exactly (12”) polynomials with @ # b and p with a = b, hence there are w
reducible polynomials. Thus there exist exactly p(pT_l) irreducible quadratic
polynomials in F,[X]. O
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For example, X2 + X + 1 is the unique prime of degree 2 in F5[X], and the
quadratic primes in F3[X] are X? +1, X2+ X —1 and X? — X — 1.

This argument can be generalized to count the number of primes of any
given degree. In this way, Gauss proved

Proposition 11.4. For any prime p and any givenn > 0, there is an irreducible
element f € Fp[X] of degree n.

This is proved in abstract algebra.

11.2 Residue Classes modulo Polynomials

Now recall that g = h mod f if f | (¢ — h). What can we say about the residue
classes modulo f in Fj,[X]? Let us look at a few examples.

1. The ring F,[X]/(X) has exactly p residue classes 0,1, ..., p — 1: in fact,
since X = 0 mod X we have a, X" + ...+ a1 X + a9 = ag mod X. Thus
every polynomial is congruent to a constant modulo X. On the other
hand, ¢ = bmod X implies a = b, and the claim follows. The map
sending the residue class a mod p to a mod X is a ring isomorphism: we
have F,[X]/(X) ~ F,.

More generally, F,[X]/(X — a) ~ F, for any a € F,. Make sure you
understand why f(X) = f(a) mod (X — a).

2. The ring F,[X]/(X?) has exactly p? residue classes, namely a + bX with
a,b € F,,. Note that this is not a field since X - X = 0 mod X2.

3. The ring Fo[X]/(f) for f(X) = X%+ X +1) has exactly 4 elements, namely
the classes represented by 0, 1, X and X +1. For example, X3 = X - X? =
X(-X-1)=X(X+1)=X?+X=X-X—1=1mod f.

It is straightforward to compute an addition and multiplication table for
the residue classes:

+ 0 1 X X+1
0 0 1 X X+1
1 1 0 X+1 X
X X X+1 0 1
X+1|X+1 X 1 0
. 0 1 X X+1
0 0 0 0 0
1 0 1 X X+1
X 0 X X+1 1
X+1 0 X+1 1 X
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In general, there are exactly N(f) = p°8/ residue classes modulo f; they
form a ring denoted by F,[X]/(f). If you have a polynomial f(X) = X"+...+
a1 X + ap € F,[X], then working modulo f works like this: observe that

X"=—q, 1 X" ' —. .. —a1 X —apmod f

allows you to reduce any polynomial g € F,[X] to some polynomial of degree
< deg f by repeatedly applying this definition. For example, for f(X) = X2+1
we get

X?=—1mod f,
X3 =—X mod f,
X*=—-X?=1mod f

etc. In particular, every polynomial g € F,,[X] is congruent modulo f to one of
St ={bp1 X" +...4+b X +by:b; € Fp}. Moreover, none of the polynomials
in Sy are congruent modulo f: if g; = g; mod f for polynomials of degree
< deg f, then f | (¢; — g;j), and since the polynomial on the right hand side
has degree < deg f, it must be 0. This shows that S is a complete system of
residue classes modulo f, and in particular it shows that there are exactly pdee f
residue classes modulo f.

Proposition 11.5. The ring F,[X]/(f) of residue classes modulo f has exactly
pleef elements.

The norm of f is by definition N(f) = #F,[X]/(f) (this is how you define

the norm of ideals in algebraic number theory), and we have found that N(f) =
deg f
peest.

11.3 Finite Fields

Now recall that if f is a prime in F,[X], then F,[X]/(f) is a domain: in fact,
if ab = 0 mod f, then f | ab, hence f | a or f | b, which in turn implies that
a=0mod f or b=0mod f. Since F,[X]/(f) has pd°&f elements, it is a finite
field. In abstract algebra you will see a proof that any finite field has p™ elements
for some prime p and some integer n > 1, and that there is exactly one such
field for each pair (p,n) up to isomorphism.

Proposition 11.6. Let K be a field. Then every polynomial f € K[X] has at
most deg [ roots.

Proof. Assume that f has the root @ € K. Then f(a) = 0. Write f(X) =
(X —a)g(X) +r(X) for some polynomial r with degr < deg(X —a) = 1. Then
degr = 0, hence r(X) is a constant. Plugging in X = a shows that r = 0.

We have seen that if f(a) = 0, then f(X) = (X —a)g(X) for some polynomial
g of degree deg g = deg f — 1. If g has a root, we can continue in this way; since
after at most deg f steps we reach a constant polynomial, we see that we can
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write f(X) = (X —ay) - (X —a,)g(X), where g is a polynomial without roots
in K. Now f(a) =(a—ay)---(a—a,)g(a). If a product in a field is zero, one of
the factors is; thus if f(a) = 0, then a = a; for some 4, and the claim follows. O

Note that the quadratic polynomial X? — 1 has four roots in (Z/8Z)[X],
namely X = 1,3,5,7 mod 8. Although we still can factor f(X) = X2 —1 =
(X — 1)(X + 1), this does not imply that X = 1 and X = —1 are the only
roots of f: in fact we have f(3) = 0 even though none of the factors 3 — 1 =2
and 3+ 1 =4 are = 0 mod 8. Also, f has the different factorizations f(X) =
(X-1D)(X+1)=(X-3)(X+3).

We now prove a generalization of the Theorem of Euler-Fermat:

Theorem 11.7 (Lagrange’s Theorem). Let G be a finite abelian group of order
#G = n (written multiplicatively). Then g™ = 1.

For the group G = (Z/mZ)* of coprime residue classes modulo m this is
just the Theorem of Euler-Fermat. For the multiplicative group F'* of a finite
field with n = ¢ elements it means that a”~! = 1 for all a € F*.

Proof. Write G ={g1 =1,9¢2,...,9n}. Then

We now claim that G = {hy,...,h,}. It is clearly sufficient to show that the
h; are pairwise distinct. But if h; = hj, then g - g; = ¢ - gj, and multiplying

through by ¢! we find ¢; = gj-
Multiplying these equations together shows that ¢ []g; = [ hi, and since
[1g: = I h: we conclude that g™ = 1. O

We also can give an abstract version of Wilson’s Theorem. In fact, let G be
a finite abelian group with n elements, say G = {¢g1 = 1,...,¢,}. In groups,
each element has an inverse, and we can form pairs (g, g~'). How often does it
happen that g = ¢g~'? Elements with this property are solutions of the equation
g?> = 1. We claim that the elements with this property form a subgroup H of
G. In fact, if g2 = 1 and h? = 1, then (gh)? = ¢g?h? = 1 since G is abelian.
Moreover, if g € H, then g~! = g inH.

By multiplying over pairs of inverse elements we see that [ gEG\H = 1. Thus
ngc = ngG\H HheH = HheH‘

This is in fact Wilson’s theorem: if G = (Z/pZ)*, then H = {+1,—1},
and we find [[ .59 = [-1]. More generally, we have H = {—1,+1} whenever
G = F is the multiplicative group of a finite field. In fact, ¢?> = 1 means
0=g?>—1=(9g—1)(g+1), and in fields this implies g =1 or g = —1.

Note that there are groups in which g2 = 1 has lots of solutions; in G =
(Z/87)*, for example, we have g2 = 1 for each element since a? = 1 mod 8
whenever a is odd.

100



11.4 Primitive Roots

We now come to an extremely important theorem:
Theorem 11.8. The multiplicative group of any finite field is cyclic.

A finite group G is called cyclic if there is an element g € G such that every
h € G is a power of g, i.e., such that h = g™ for some integer n (if G is written
multiplicatively) or h = ng (if G is written additively). In such a case we say
that G is generated by g.

Examples:

e A trivial example: The groups Z/mZ are generated by the residue class
1 mod m: every element of Z/mZ has the form n = n - 1 mod m.

e The group (Z/5Z)* = {1,2,3,4mod 5} is generated by 2 mod 5 since
2=2,22=4,23=3and 2* =1 mod 5. In our new notation this would
read that FZ = {1,2,3,4} is cyclic since 2! =2,2% =4,23 =3 and 2* = 1
in F5.

e The group (Z/8Z)* is not cyclic: each of the residue classes 1, 3, 5,
7 mod 8 does not generate the full group.

Since (Z/pZ)* is the multiplicative group of the finite field Z/pZ, it is cyclic.
Generators of (Z/pZ)* are called primitive roots modulo p. For example, 2 is
a primitive root modulo 5, and 3 is a primitive root modulo 7.

For the proof we a bit of information on the order of elements a in finite
abelian groups G: this is the smallest positive integer r such that a” = 1.

Lemma 11.9. Let g be an element of order n in some finite abelian group G.
If g™ =1, then n | m.

Proof. Write m = gn + r with 0 < r < n (Euclidean division); then 1 = ¢" =
gI"TT = ¢q4"g" = g". Since n is the minimal positive exponent with this property
and r < n, we must have » = 0. This proves the claim. O

Lemma 11.10. If G is an abelian group, and if a,b € G are elements of order
m and n respectively such that gcd(m,n) = 1, then ab has order mn.

Proof. Clearly (ab)™ = a™"b™" = (a™)™(b™)™ = 1, so ab has order dividing
mn (note that we have used commutativity here).

For the converse, let k denote the order of mn, that is the minimal integer
k with 1 < k < mn such that (ab)* = 1; we have to show that k = mn.

From (ab)® = 1 we get 1 = (ab)*" = a*™b*™ = b*™; hence n | km by
Lemma [T1.9} since ged(n, m) = 1, we have n | k.

Exactly the same reasoning with the roles of a and b interchanged shows
that m | k. But ged(m,n) =1, hence n | k and m | k imply that mn | k. Since
k # 0, we conclude that k > mn, and this proves the claim. O
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Proof of Theorem[I1.8 Let n = #F* denote the number of elements of the
finite abelian group F*. If n = 1, the claim is trivial because F* = {1} is
clearly generated by 1. If n > 1, let p be a prime divisor of the order n of F'*.
Then there is an element a € F such that a”/? # 1. For if not, then every
a € F is a root of the polynomial f(X) = X"/P —1; in particular, f has degree
n/p and n roots. But polynomials f over fields can have at most deg f roots:
contradiction.

Now let p” be the exact power of a prime p that divides n = #F*; then
we claim that the element 2 = a™/?" has order p”. In fact, 2¢ = a" = 1
by Lagrange’s Theorem (in the case that we are most interested in, namely
F = 7/pZ, this is just Fermat’s Little Theorem), so the order of = divides p”
by Lemma If the order were smaller, then we would have 2 = 1; but
2P = q"/P +£ 1 by choice of a.

Now write n = pi* ---p;*. By the above, we can construct an element z; of
order p!* for every 1 < i < t. But then x -- -, has order n by Lemma
(use induction). O

The fact that (Z/pZ)* is cyclic can be used to give another proof of the
fact that the congruence 22 = —1 mod p is solvable if p = 1 mod 4: since
(Z/pZ)* is cyclic, there is an element g € Z such that [z] has order p — 1.
Thus g?~' = 1 mod p, hence p | (¢*~* — 1) = (¢®@=D/2 —1)(¢®=D/2 +1). If p
divided the first factor, then [g] would have order dividing p—;l; thus p divides
the second factor, and we find ¢®»~1/2 = —1 mod p. Put z = g®~V/4; then

2?2 = —1 mod p.

Definition. We say that an integer g is a primitive root modulo m if the powers
of g generate all residue classes coprime to m. For example, 3 is a primitive
root modulo 7, but 2 is not.

Corollary 11.11. For every prime p there exist primitive roots.

Proof. Since Z/pZ is a finite field, the group (Z/pZ)* is cyclic, that is, there
exists an integer g of order p — 1; the powers of g generate the whole group
(Z/pZ)*. O

Proposition 11.12. Let g be a primitive root modulo some odd prime p. Then

g(p_l)/Q = —1 mod p; in particular, (%) =-1

Proof. The square of ¢?~1/2 is = 1 mod p by Fermat’s Little Theorem, hence
g®=1/2 = £1. But if g?»~1/2 = 1, then the powers of g generate at most 25+
elements, namely ¢°, ¢*, ..., ¢g®=3)/2, contradicting our assumption that g be
a primitive root. O

We also can see why (’71) = +1 for primes p = 1 mod 4: in this case, p—1 =

4m, and the integer j = ¢ mod p has the property j2 = ¢?»~1/2 = —1 mod p.
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11.5 Gauss and Primitive Roots

Let me also give Gauss’s proof of the existence of primitive roots, stated slightly
more generally for abelian groups:

Theorem 11.13. Let G be a finite group. Assume that, for every divisor d of
n = #G, the equation x@ = 1 has at most d solutions. Then G is cyclic.

Proof. Assume that d | n, and let ¥(d) denote the number of elements in G with
order d (thus for G = (Z/5Z)*, we have (1) = 1, ¢(2) = 1, and ¥(4) = 2). If
(d) # 0, then there is an element g € G of order d, and then 1, g, ¢, ..., g%}
are distinct solutions of the equation z% = 1 in G. By assumption, there are at
most that many solutions, hence these are all solutions of 2% = 1.

Let us now determine the order of g’C for 0 < k < d. We claim that gk has
order d/ged(d, k). In fact, (gF)%/ &cd(dk) — (gk/eecd(dk)yd — 1 5o the order of
g* divides d/ ged(d, k). On the other hand, from 1 = (g¥)™ = g*™ we deduce
that d | km, since d is the order of g. Dividing through by gecd(d, k) gives

Zed(dh) | Zed(@m M But since Zed (@R and ed(d ) are coprime (we have divided

out the common factors), this implies that m | m, which proves our claim.

Thus if g has order d, then there are exactly ¢(d) elements of order d in
G, namely the ¢gF with ged(d,k) = 1. In other words: we have ¥(d) = 0 or
¥(d) = ().

Now clearly every element of g has some order, and this order divides n =
#G, hence n = 3", (d). Next ¢(d) < ¢(d) implies that n = -, ¥(d) <
>_dn #(d) = n, where we have used that }_,, ¢(d) = n. Taking this for granted
for a moment, we see that we must have equality in >, ¥(d) < >, ¢(d).
But this happens if and only if ¥(d) = ¢(d) for every d | n, and in particular
there exists an element of order n since ¥(n) = ¢(n) > 1. O

Note that Gauss’s proof shows that there exist ¢(p — 1) primitive roots
modulo p, since G = (Z/pZ)* has n = p — 1 elements.

Corollary 11.14. The multiplicative group F* of a finite field F is cyclic.

Proof. All we have to do is show that the equation z% = 1 has at most d solutions
in F* but this is true in any field. O

It remains to prove

Lemma 11.15. For every n € N we have }_;,, ¢(d) = n.

In fact, for n = 6 this says ¢(1) + ¢(2) + ¢(3) + ¢(6) =1+14+2+2 =6.

Proof. Consider the fractions 1, 2, ... 2. For some d | n, how many of these
n n n

fractions have denominator d when written in lowest terms?

Clearly there will be ¢(n) fractions with denominator n since these are ex-
actly the £ with ged(k,n) = 1.

Now assume that n = dm; the fraction % will have denominator d if and
only if k = mt and ged(t,d) = 1. Clearly there are ¢(d) such fractions.
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Thus among the n fractions, for each d | n there are ¢(d) fractions with
denominator d, hence n =3, ¢(n). O

11.6 Gauss’s 6th Proof of Quadratic Reciprocity

I can’t bring myself to omit giving a modern version of Gauss’s sixth proof of
the quadratic reciprocity law in Z based on the arithmetic of finite fields.

Let p and ¢ be odd primes. By Fermat’s Little Theorem, ¢! = 1 mod p,
hence the multiplicative group F.¢ of the finite field F,, with n = ¢?~! has n — 1
elements. Since F,, = Fy[X]/(f) for some irreducible polynomial of degree n,
we find that ¢ = 0 in F,,; in particular, we have (a + 0)? = a9 + b? since the
binomial coefficients “in the middle” all vanish modulo gq.

Let = be a generator of F)¢; then x has order n — 1, hence ¢ := z("=1/P has
order p, i.e. ( #1 and (P = 1. Now we form the Gauss sum

p—1
G = ; (%)ga.

Clearly G is an element of the finite field F,,.

In the special case p = 3 we find G = ¢ — (2, where (3 = 1. Since 0 =
¢ —1=(¢C—1)(¢*+ ¢ +1) and since ¢ # 1, we conclude that (? + ¢ +1 = 0.
Now G2 =(? -2+ =C+¢-2=C+(C+1-3=-3.

We now derive the following properties of Gauss sums:
Proposition 11.16. Let G be the Gauss sum defined above. Then

_ (9

1. G4 = (p)G,

2. G? = p*, where p* = (%)p.

This immediately implies the quadratic reciprocity law. In fact we find

(2) =t = @5 =) = (2),

which in light of

p* -1 %1 P p=1g-1 /D
(5)-(D)7 Q) -
q p q q

is the quadratic reciprocity law.

Proof of Prop. [11.16, We see

= (S () -E ()
(05 (e - (5 (D)= (9)e



since ()7 = (3), since (x +y)? = 2%+ y? in any finite field containing F,, and
since b = aq runs through a complete system of coprime residues modulo p if a
does.

The proof of the second claim is slightly more technical and requires the
following observation:

p—1
Lemma 11.17. For an odd prime p we have S = Z (c) =0

Proof. Let a be a quadratic non-residue mod p. Then

-(Z6)-56)-50) -

where we have used that b = ac runs through (Z/pZ)* if ¢ does (this is because
different values of a give rise to different values of b: an equation ac = a’c implies
a=a). O

Now we find
P a b ab
G2 _ <> Ca . (> Cb — <> Caer'
(; p ; p a,b p

Now substitute b = ac; this yields

p—1 p—1
GQ — Z (;)ca—&-ac — Zl (;) Zl(gl-i-c)a-

But if ¢ # —1, then ¢(**¢ is a primitive p-th root of unity, and > 7_, ¢(* = 0
shows S2P71 (% = —1, thus

£ ()G =5 () e (5)

p—1 c
p* _ - :p*
> (5)

G2

O

This proof of the quadratic reciprocity law generalizes to cubic and quartic
residues; essentially you have to replace the Legendre symbol in the quadratic
Gauss sum by the cubic or quartic residue symbol [2], the summation will
be over a complete system of residues modulo 7, and the exponent a in (% is
replaced by the integer a+ o’. Then the analog of the first property holds, and
the second one is replaced by only slightly more complicated formulas.
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Exercises

11.1 Show that 2 is not a primitive root modulo primes p = +1 mod 8.

11.2 Find a prime p = 3 mod 8 for which 2 is not a primitive root.

11.3 It is quite easy to state and prove Gauss’s Lemma for general finite cyclic groups
G of even order #G = 2m. Assume that g generates G.

1.

Define —1 = g™. Show that (—1)% = 1.

2. Show that a™ € {—1,+1}.

Define a “Legendre symbol” (&) = £1 via (&) = a”. Show that a is a

G
square in G if and only if (&) = 1. (Hint: write a = g™ for some m.)

. Show that A = {1,g,¢% ...,¢g" '} defines a halfsystem, i.e. prove that

every g € G has the property that either g € A or —g € A.

Write ag’ = (—=1)*Wg? for 0 <i < n and let u = s(0) +s(1)+...+s(n—1).
Prove Gauss’s Lemma (&) = (—1)*.

Applying this abstract result to the cyclic groups G = (Z/pZ)*, (Z[i]/nZ[i])*
and (F,[X]/(P))* now gives Gauss’s Lemma in the rings Z, Z[i] and F,[X],
respectively.
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