
Chapter 10

The Arithmetic of Z[i]

In this chapter we will briefly discuss number theory in the ring of Gaussian
integers. We know it is a unique factorization domain, so primes and irreducibles
are the same. Here we will determine all primes, the units, compute some residue
classes, etc.

10.1 Units and Primes

Finding all units in R = Z[i] is easy. Assume that a + bi is a unit; then
(a + bi)(c + di) = 1, and taking the norm shows that (a2 + b2)(c2 + d2) = 1,
which implies that a2 + b2 = 1. This happens if and only if a+ bi ∈ {±1,±i}.

Proposition 10.1. We have Z[i]× = {±1,±i}.

Now let us determine all the primes in Z[i]. Assume that a + bi is prime.
Then (a+ bi) | (a+ bi)(a− bi) = N(a+ bi) = a2 + b2. Thus every prime divides
a natural number a2 + b2; writing this number as a product of primes in N and
keeping in mind that a + bi is a prime in Z[i] we find that a + bi must divide
one of the prime factors of a2 + b2.

Lemma 10.2. Every prime in Z[i] divides a prime in Z.

Thus in order to find all primes in Z[i] we only need to look at factors of
primes in Z. Of course primes in Z need not be prime in Z[i]: for example, we
have 5 = (1 + 2i)(1− 2i).

Now assume that a prime p ∈ N factors nontrivially in Z[i]; then p = (a +
bi)(c+di). Taking norms gives p2 = (a2 +b2)(c2 +d2). Since none of the factors
is a unit, we must have a2 + b2 = c2 + d2 = p. Since a2 + b2 ≡ 0, 1, 2 mod 4,
primes of the form p ≡ 3 mod 4 are irreducible in Z[i], and since Z[i] is a UFD,
they are prime (in algebraic number theory, primes in Z remaining prime in an
extension are called inert).

Next 2 = i3(1 + i)2: thus 2 is a unit times a square (in algebraic number
theory, such primes will be called ramified).
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Finally, if p ≡ 1 mod 4, then (−1
p ) = +1, hence x2 ≡ −1 mod p for some

integer x. This implies p | (x2 + 1) = (x + i)(x − i). Now clearly p does not
divide any of the factors since x

p + 1
p i is not a Gaussian integer. Thus p divides

a product without dividing one of the factors, and this means p is not prime in
Z. Since irreducibles are prime, this implies that p must be reducible, i.e., it has
a nontrivial factorization. We have seen above that this means that p = a2 + b2

for a, b ∈ Z: thus the first supplementary law plus unique factorization in Z[i]
implies Fermat’s two-squares theorem!

Note that this proof is a lot more involved than the simple proof we have
given before; on the other hand, it is much clearer.

Let us get back to primes p ≡ 1 mod 4. We have seen that p = a2 + b2 =
(a+ bi)(a− bi). Can it happen that a+ bi and a− bi differ only by a unit? If
a+ bi = (a− bi)ε, then ε = a+bi

a−bi = 1
p (a+ bi)2 = 1

p (a2 − b2 + 2abi). But this is
not a Gaussian integers since p - 2ab. Thus a+ bi and a− bi are distinct primes
(in algebraic number theory, we say that such primes split).

Theorem 10.3. The ring Z[i] has the following primes:

• 1 + i, the prime dividing 2;

• a+ bi and a− bi, where p = a2 + b2 ≡ 1 mod 4;

• rational primes q ≡ 3 mod 4.

In particular, Z[i] has infinitely many primes. We could have proved this
also by Euclid’s argument.

10.2 Residue Class Systems

Of course we can now define residue classes in Z[i]: we say that a + bi ≡
c+ di mod r + si if (r + si) | (a− c+ (b− d)i). If a+ bi is a prime, how many
residue classes are there?

This is easy for the prime 1 + i: we claim that every Gaussian integer is
congruent to 0 or 1 mod 1 + i. In fact, a + bi ≡ a − b mod (1 + i) because
i ≡ −1 mod 1 + i. Now we can reduce a− b mod 2 since 2 is a multiple of 1 + i,
and this proves the claim. Moreover, 1 6≡ 0 mod 1 + i since 1 is not divisible by
1 + i. Thus {0, 1} is a complete system of residues modulo 1 + i.

The same trick works for primes c + di with norm p ≡ 1 mod 4: we have
i ≡ − c

d mod c+di, hence a+bi ≡ a−b c
d mod a+bi. Thus every Gaussian integer

is congruent to some integer modulo a+ bi. Now we can reduce modulo p (this
is a multiple of a+bi) and find that every Gaussian integer is congruent to some
element 0, 1, . . . , p−1 modulo a+bi. Moreover, these elements are incongruent
modulo a+ bi: if r ≡ s mod a+ bi for 0 ≤ r, s < p, then (a+ bi) | (r− s); taking
norms gives p2 | (r−s)2, hence p | (r−s) and finally r = s. Thus {0, 1, . . . , p−1}
is a complete system of residues modulo the prime a+ bi with norm p.

Finally, consider inert primes q ≡ 3 mod 4. Here we claim that S = {r+ si :
0 ≤ r, s < p} is a complete system of residues modulo p (note that this set
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contains p2 elements). It is clear that every a+bi ≡ r+si mod p for some r+si ∈
S: just reduce a and b modulo p. We only have to show that no two elements
in S are congruent modulo p. Assume therefore that r + si ≡ t+ ui mod p for
0 ≤ r, s, t, u < p. Then p | (r−t+(s−u)i), i.e., r−t

p + s−u
p i ∈ Z[i]. This happens

if and only if r ≡ t mod p and s ≡ u mod p, which implies r = t and s = u.
We have proved:

Proposition 10.4. The complete system of residues modulo a Gaussian prime
a+ bi has exactly N(a+ bi) = a2 + b2 elements.

Let us now add a level of abstraction and consider, for a prime p = a2 +b2 ≡
1 mod 4, the map λ : Z/pZ −→ Z[i]/(a + bi) : [r]p 7−→ [r]a+bi. It obviously is
a homomorphism because λ([r]p)λ([s]p) = [r]a+bi[s]a+bi = [rs]a+bi = λ([rs]p).
From what we have seen above, λ is surjective because every residue class mod-
ulo a+ bi is represented by one of the integers 0, 1, . . . p− 1. Is λ injective? Its
kernel is kerλ = {[r]p : [r]a+bi = [0]a+bi}. Now r ≡ 0 mod a+ bi implies p2 | r2,
hence p | r, hence [r]p = [0]p. Thus kerλ = {[0]p}, and λ is injective.

We have seen that λ : Z/pZ −→ Z[i]/(a + bi) is an isomorphism: the two
residue class systems have the same number of elements, the same structure,
and in particular, they are both fields with p elements.

What can we say about the residue class ring R = Z[i]/(p) for primes p ≡
3 mod 4? Let us check that R is a domain, i.e., that it has no zero divisors. In
fact, assume that (a + bi)(c + di) ≡ 0 mod p. Since p is a prime in Z[i], this
implies p | (a+ bi) or p | (c+ di), hence [a+ bi]p = [0]p or [c+ di]p = [0]p, and
this shows that R is a domain.

Now we have

Proposition 10.5. Any domain R with finitely many elements is a field.

Proof. Let a ∈ R be nonzero. We need to show that a is a unit, i.e. that there
is a b ∈ R with ab = 1. Let n = #R; we claim that an−1 = 1 (this is like
Fermat’s little theorem, and the proof is the same). Write R \ {0} = {a1 =
1, a2, . . . , an−1}. Define elements bj by aja = bj . We claim that the bj are just
the aj in some order. This will follow if we can show that no two bj are equal.
Assume therefore that bj = bk; then aja = aka. Since R is a domain, we may
cancel (note that ac = ad implies a(c−d) = 0, and since R has no zero divisors,
this shows that a = 0 or c = d), and we get aj = ak.

Next we multiply all the equations a1a = b1, . . . , an−1a = bn−1; since∏
aj =

∏
bj we conclude that an−1 = 1.

Now we simply put b = an−2 and observe that ab = 1.

We have proved:

Proposition 10.6. Let p ≡ 3 mod 4 be prime. Then Z[i]/(p) is a field with p2

elements.

There also exist finite fields with p2 elements for primes p ≡ 1 mod 4, but
these cannot be constructed as residue class fields in Z[i].
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Quadratic Reciprocity

Now pick a prime π = a+ bi ≡ 1 mod 2; note that this means that a is odd and
b is even. We have

Proposition 10.7 (Fermat’s Little Theorem). For any element α coprime to
π we have αNπ−1 ≡ 1 mod π.

The proof is analogous to the one in Z: enumerate the Nπ − 1 elements αi

in (Z[i]/πZ[i])×, then multiply them by α and show that the products βi ≡
ααi mod π are just the αi in some order. Then multiply etc.

As an example, let us compute (1 + i)Nπ−1 mod π for π = 1 + 2i. Then
Nπ = 5 and (1 + i)4 = (2i)2 = −4 ≡ 1 mod 5, hence modulo π.

Since π ≡ 1 mod 2 we find that Nπ = a2 + b2 ≡ 1 mod 4. Thus

0 ≡ αNπ−1 − 1 =
(
α

Nπ−1
2 − 1

)(
α

Nπ−1
2 + 1

)
mod π,

hence α
Nπ−1

2 ≡ ±1 mod π since π is prime. We now define the quadratic Legen-
dre symbol [α

π ] = ±1 in Z[i] by[α
π

]
≡ α

Nπ−1
2 mod π.

As an example, let us compute [ 1+i
1+2i ]. We find (1 + i)(Nπ−1)/2 = (1 + i)2 =

2i ≡ −1 mod π, hence [ 1+i
1+2i ] = −1.

In order to prove a quadratic reciprocity law in Z[i] we collect a few simple
properties of these symbols.

Proposition 10.8. For elements α, β, π ∈ Z[i] with π ≡ 1 mod 2 prime we
have

1. [α
π ] = [β

π ] if α ≡ β mod π;

2. [αβ
π ] = [α

π ][β
π ];

3. [αβ
π ] = +1 if α ≡ ξ2 mod π.

Proof. The first and second follow directly from the definition. Assume now that
α ≡ ξ2 mod π; then α

Nπ−1
2 ≡ ξNπ−1 ≡ 1 mod π by Fermat’s Little Theorem.

We also will use a few results on the quadratic character of certain integers:

Proposition 10.9. Let p = a2 + b2 be an odd prime, and suppose that a is odd.
Then (

a

p

)
= 1,

(
b

p

)
=

(
2
p

)
, and

(
a+ b

p

)
=

(
2

a+ b

)
.

Proof. Using the quadratic reciprocity law, we get (a
p ) = ( p

a ) = +1, because
p = a2 + b2 ≡ b2 mod a. Next the congruence (a+ b)2 ≡ 2ab mod p shows that
(a

p ) = ( 2b
p ), and this proves our second claim. Finally 2p = (a + b)2 + (a − b)2

implies that (a+b
p ) = ( p

a+b ) = ( 2
a+b ).
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In order to prove the quadratic reciprocity law in Z[i], we write π = a+bi, λ =
c+di; then π ≡ λ ≡ 1 mod 2 implies that a ≡ c ≡ 1 mod 2 and b ≡ d ≡ 0 mod 2.
If π = p ∈ Z or λ = ` ∈ Z, the proof follows directly from the relations[

p
λ

]
=

(
p

Nλ

)
and

[
π
`

]
=

(
Nπ
`

)
, which are easy to verify:

Proposition 10.10. For primes π ∈ Z[i] and elements a ∈ Z coprime to pi we
have [ a

π ] = ( a
Nπ ).

Proof. We have [ a
π ] ≡ a(Nπ−1)/2 mod π and ( a

Nπ ) ≡ a(Nπ−1)/2 mod p. This
implies [ a

π ] ≡ ( a
Nπ ) mod π. If the symbols were different, then π must divide 2,

hence Nπ must divide 4, and this is nonsense since π has odd norm > 1.

Thus we may assume that p = Nπ and ` = Nλ are prime. We find immedi-
ately that ai ≡ b mod π and ci ≡ d mod λ, hence we get[π

λ

]
=

[ c
λ

][ac+ bci

λ

]
=

[ c
λ

][ac+ bd

λ

]
.

Since c ∈ Z and ac+ bd ∈ Z, we find[ c
λ

]
=

(c
`

)
and

[
ac+ bd

λ

]
=

(
ac+ bd

`

)
.

Using Proposition 10.9, we find[π
λ

]
=

(ac+ bd

`

)
. (10.1)

But now p` = (a2+b2)(c2+d2) = (ac+bd)2+(ad−bc)2 ≡ (ad−bc)2 mod (ac+bd)
implies

(
`

ac+bd

)
=

(
p

ac+bd

)
, and applying the quadratic reciprocity law in Z twice

shows that (
ac+ bd

`

)
=

(
`

ac+ bd

)
=

(
p

ac+ bd

)
=

(
ac+ bd

p

)
.

The quadratic reciprocity law in Z[i] follows by symmetry:[π
λ

]
=

(
ac+ bd

`

)
=

(
ac+ bd

p

)
=

[
λ

π

]
.

The supplementary laws follow immediately from (10.1) by putting a = 0, b = 1
or a = b = 1, and using quadratic reciprocity.

Quartic Reciprocity

Note that Nπ ≡ 1 mod 4 implies that we have

0 ≡ αNπ−1 − 1 =
(
α

Nπ−1
2 − 1

)(
α

Nπ−1
2 + 1

)
≡

(
α

Nπ−1
4 − 1

)(
α

Nπ−1
4 + 1

)(
α

Nπ−1
4 − i

)(
α

Nπ−1
4 + i

)
mod π,
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hence we can define a quartic power residue symbol [α
π ]4 ∈ {1, i,−1,−i} by

demanding that [α
π

]
4
≡ α

Nπ−1
4 mod π.

This symbol satisfies the quartic reciprocity law, according to which[π
λ

]
4

=
[λ
π

]
4
(−1)

Nπ−1
4

Nλ−1
4

for any two primes π ≡ λ ≡ 1 mod (2 + 2i). Its proof is much more difficult
that that of the quadratic reciprocity law, but is quite easy using Gauss sums,
which are objects defined using the theory of finite fields.

10.3 The ring Z[
√
−2]

The arithmetic of this ring is very similar to that of Z[i]. In particular, it is a
UFD. We will now use this fact to prove one of Fermat’s claims; the proof itself
is due to Euler, who worked with the algebraic integers a + b

√
−2 as if they

were natural numbers, not worrying about defining what primes, gcd’s etc. are
or whether unique factorization holds.

Theorem 10.11. The diophantine equation y2 = x3− 2 has (3,±5) as its only
solutions in integers.

Proof. Write x3 = y2 + 2 = (y +
√
−2 )(y +

√
−2 ). Note that y must be

odd (otherwise y2 + 2 ≡ 2 mod 4, and no cube is ≡ 2 mod 4). Now let δ =
gcd(y+

√
−2, y+

√
−2 ). Clearly δ | 2

√
−2 (the difference of these values); thus

δ is a power of
√
−2. On the other hand, if

√
−2 | (y ±

√
−2 ), then it divides

the product of these factors, which is x3 = y2 +2. But x is odd, hence
√
−2 - δ.

We have seen that y+
√
−2 and y+

√
−2 are coprime and that their product

is a cube. Since Z[
√
−2 ] is a UFD, this implies that the factors are cubes

up to units. Since the only units are ±1 and since these are cubes, it follows
that y +

√
−2 = (a + b

√
−2 )3. Comparing real and imaginary parts we find

y = a3 − 6ab2 and 1 = 3a2b − 2b3. The last equation shows 1 = b(3a2 − 2b2),
hence b = ±1 and therefore a = ±1. This shows y = ±5 and finally x = 3.

10.4 The ring Z[
√
−5]

This ring is not a UFD: we have 2·3 = (1+
√
−5 )(1−

√
−5 ), and all these factors

are irreducible. In fact, 3 = (a+ b
√
−5 )(c+ d

√
−5 ) implies 9 = (a2 + 5b2)(c2 +

5d2), which in turn is possible only if (c, d) = (±1, 0) or (a, b) = (±1, 0); thus 3
only has trivial factorizations.

As above we can show that if x2 ≡ −5 mod p is solvable, then p is not prime.
But since Z[

√
−5] is not a UFD, this does not imply that p is reducible: see the

example p = 3 above.
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Exercises

10.1 Use the Euclidean algorithm to compute gcd(7− 6i, 3− 14 ∗ i).

10.2 Find the prime factorization of −3 + 24i. (Hint: first factor the norm).

10.3 Find c ∈ {0, 1, . . . , 16} such that 3 + 2i ≡ c mod 1 + 4i.

10.4 Show that for any α ∈ Z[i] with odd norm there is a unit ε ∈ Z[i]× such that
αε = a+bi with a odd, b even, and a+b ≡ 1 mod 4. Show also that this condition
is equivalent to a + bi ≡ 1 mod (2 + 2i).

10.5 Use Euclid’s argument to show that there are infinitely many primes in Z[i].

10.6 Show that for primes p = a2 + b2 with b even we have [ a+bi
a−bi

] = ( 2
p
).

10.7 Compute the quartic symbols [ 1+2i
1+4i

]4 and [ 1+4i
1+2i

]4, and check that the quartic
reciprocity law holds for these elements.

10.8 Let R = Z[
√

m ] with m < −1. Show that R× = {±1}.

10.9 Show that Z[
√

2 ] contains infinitely many units.

10.10 Find all the prime elements in Z[
√
−2 ].

10.11 Use the ring Z[
√
−2 ] to construct finite fields with p2 elements for primes p ≡

5, 7 mod 8.

10.12 Solve the congruence x2 ≡ −1 mod 41 and then compute gcd(x + i, 41) in Z[i].

10.13 Find infinitely many integers x, y, z ∈ Z with x2 + y2 = z3.

10.14 Solving equations like y2 = x3 + c is not always as easy as for c = −2. Show that
solving y2 = x3 + 1 in the standard way leads to the new diophantine equation
a3 − 2b3 = 1. How do you think mathematicians solve this last equation?
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