
Chapter 1

The Natural Numbers N

The invention of the axiomatic method goes back to the Greeks: Euclid tried
to build his geometry on just five postulates, which the Greeks viewed as ‘self-
evident’ truths. It was realized only in the 19th century that these truths were
not selfevident at all, but rather a collection of axioms describing Euclidean
geometry and distinguishing it from other geometries satisfying other axioms.
This insight made mathematicians wonder whether other areas of mathematics
could also be desscribed using the axiomatic method.

The axiomatization of modern mathematics was a process that started at
the end of the 19th century. In working with Galois groups and, more generally,
with permutation groups, mathematicians began to realize that many theorems
(Lagrange’s result that the order of an element divides the order of the group,
Cauchy’s theorem that if a prime p divides the order of a group, then the group
has an element of order p, Sylow’s theorem, or the decomposition of abelian
groups like the class group of binary quadratic forms into cyclic subgroups)
could be stated and proved for abstract groups. Finding the right axioms of
abstract groups was a problem occupying numerous mathematicians from Kro-
necker to Weber. At the same time, Peano found axiomatic descriptions of the
natural numbers and of vector spaces, and Moore came up with the field axioms.
Although it was immediately realized that group theory could be built on just
the axioms, it took a while until Steinitz did something similar for fields, and
the general theory of rings had to wait for Fraenkel and Emmy Noether.

In this chapter we will develop the basic properties of the natural numbers
from the Peano axioms; the construction of negative and rational (as well as
p-adic, real and hyperreal numbers) will then be built upon the set of natural
numbers.

1.1 Peano Axioms

In every deductive theory there are certain statements you must take for granted:
you can’t prove theorems by assuming nothing. What we are taking for granted
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here are elementary notions of sets and the basic properties of natural numbers
as encoded by the following statements called the Peano axioms: Let N be a set
together with a ‘successor’ function s such that

N1: 0 ∈ N;

N2: if x ∈ N, then s(x) ∈ N;

N3: there is no x ∈ N with s(x) = 0;

N4: if s(x) = s(y), then x = y;

N5: if S is a subset of N containing 0, and if s(n) ∈ S whenever n ∈ S, then
S = N.

Remark 1. Axiom N1 says that 0 should be a natural number.
Axiom N2 states that s is a map N −→ N, that is: each element of N gets

mapped to another element of N.
Think of N3 as saying that 0 is the first natural number, or that ‘−1’ is not

an element of N.
Axiom N4 states that the map s : N −→ N is injective. A map f : A −→ B is

called injective (or one-to-one) if f(a) = f(a′) for a, a′ ∈ A implies that a = a′,
in other words: if different elements get mapped to different images.

Axiom N5 is called the Principle of Induction. Assume you want to prove
a statement P (n) (say that n2 + n is even) for all n ∈ N; let S denote the set
of natural numbers z ∈ N for which P (n) is true. If you can show that P (0)
holds (i.e. that 0 ∈ S) and that P (s(n)) holds whenever P (n) does (i.e. that
s(n) ∈ S whenever n ∈ S) then this axiom allows you to conclude that P (n)
holds for every natural number.

Informally speaking, these axioms describe the basic properties of natural
numbers; logicians can prove that if a set N with a successor function s satisfying
N1– N5 exists, then it is essentially unique (this means that the Peano axioms
characterize the natural numbers), but we won’t need this.

What we want to do here is to show how the arithmetic of the natural
numbers can be derived from the Peano axioms. We start by giving the natural
numbers their usual names: we put 1 := s(0), 2 := s(1), 3 = s(2), 4 = s(3),
etc.; in particular N = {0, 1, 2, 3, 4, . . .}.

Remark 2. Some mathematicians (including me) prefer not to regard 0 as a
natural number and define N = {1, 2, 3, . . .}. The construction of the integers
from the naturals, however, would be complicated by the lack of a 0.

Proposition 1.1. If x ∈ N and x 6= 0, then there exists a y ∈ N such that
x = s(y).

Proof. The following proof is fairly typical for much that follows. Put

S = {x ∈ N : x = s(y) for some y ∈ N} ∪ {0}.
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We prove that S = N by induction.
In fact, 0 ∈ S by definition. Assume that x ∈ N; then s(x) ∈ S since s(x) is

the successor of x. By the induction axiom N5, we have S = N, that is, every
nonzero natural number is a successor.

1.2 Addition

Next we define an operation + on N that we call addition. We have to say
what m + n should mean. How can we do that in terms of our axioms? We can
certainly define m + 0 by putting

m + 0 := m. (1.1)

Now assume that we already know what m + n means; we then define

m + s(n) := s(m + n); (1.2)

in particular, m + 1 = m + s(0) = s(m + 0) = s(m), hence m + (n + 1) :=
(m + n) + 1.

Combining 1 = s(0), 2 = s(1) and 1 + 1 = 1 + s(0) = s(1 + 0) = s(1), we
find that 1 + 1 = 2; observe that 2 = s(1) is a definition, whereas 1 + 1 = 2 is a
theorem. Before we go on, we prove

Proposition 1.2. Equations (1.1) and (1.2) define addition m+n for all m,n ∈
N.

Proof. This is Peano’s original proof: Let m ∈ N be any natural number. Let
S be the set of all n ∈ N for which m + n is defined. We want to show that
m + n is defined for all n ∈ N, i.e., that S = N. We shall accomplish this by
using Peano’s induction axiom N5.

First, we have 0 ∈ S since, by (1.1), m + 0 is defined (it equals m).
Next, if n ∈ S, then m + n is defined, and since m + s(n) = s(m + n) by

(1.2), so is m + s(n). In other words: if n ∈ S, then s(n) ∈ S.
By the Induction axiom N5, we conclude that S = N, hence addition m + n

is defined for all n ∈ N (and also for all m ∈ N since m was arbitrary).

The problem with this proof is that we haven’t really defined what it means
for addition to be defined. Let us make this more exact: we say that (1.1) and
(1.2) define addition on N if there exists a unique function f : N×N −→ N such
that

f(m, 0) = m and (1.3)
f(m, s(n)) = s(f(m,n)) (1.4)

for all m,n ∈ N.
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Complete Proof of 1.2. Let us first proof that the function f , if it exists, is
unique. So assume that f and g are two functions satisfying (1.3) and (1.4)
above. Fix m ∈ N and put

S = {n ∈ N : f(m,n) = g(m,n)}.

Then 0 ∈ S because f(m, 0) = m = g(m, 0) by (1.3). Now assume that n ∈ N.
Then

f(m, s(n)) = s(f(m,n)) by (1.3)
= s(g(m,n)) since n ∈ S
= g(m, s(n)) by (1.3)

Thus s(n) ∈ S, hence S = N by induction.
Now we have to prove that such a function f exists. We do that by proving

that for every n ∈ N, we can define f(m,n) for all m ∈ N in such a way that
(1.3) and (1.4) are satisfied.

This is clear if n = 0 because (1.3) says that f(m, 0) = m. Assume now that
f(m,n) is defined for some n ∈ N and all m ∈ N; then f(m, s(n)) = s(f(m,n))
by 1.4, hence f(m, s(n)) is defined. The claim now follows from induction.

Now we can prove that the addition of natural numbers has the ‘well known’
properties:

Proposition 1.3 (Associativity of Addition). For all x, y, z ∈ N, we have
x + (y + x) = (x + y) + z.

Proof. Let x, y ∈ N be arbitrary and put

S = {z ∈ N : x + (y + x) = (x + y) + z}.

Again, S is the set of natural numbers z ∈ N for which the claim is true, and
our task is to show that S = N.

Now 0 ∈ S because

x + (y + 0) = x + y by (1.1)
= (x + y) + 0 by (1.1)

Next assume that z ∈ S. Then we want to show that s(z) ∈ S, and to this
end we have to prove that x + (y + s(z)) = (x + y) + s(z). Here we go:

x + (y + s(z)) = x + s(y + z) by (1.2)
= s(x + (y + z)) by (1.2)
= s((x + y) + z) since z ∈ S
= (x + y) + s(z) by (1.2)

By the induction principle, this proves that S = N and we are done.

Lemma 1.4. For all x ∈ N, we have 0 + x = x.

By definition we know that x+0 = x; since we haven’t proved commutativity
of addition yet, we don’t know that 0 + x = x at this point.
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Proof. Let S denote the set of all x ∈ N for which 0 + x = x. Then 0 ∈ S since
0 + 0 = 0 by (1.1). Now assume that x ∈ S. Then

s(x) = x + 1 put n = 0 in (1.2)
= (0 + x) + 1 since x ∈ S
= 0 + (x + 1) by Prop. 1.2
= 0 + s(x) put n = 0 in (1.2)

Thus S = N by the induction principle.

Lemma 1.5. We have s(x) + y = x + s(y) for all x, y ∈ N.

Proof. Fix x ∈ N and put S = {y ∈ N : s(x) + y = x + s(y)}. Then 0 ∈ S since
s(x) + 0 = s(x) = s(x + 0) = x + s(0) = x + 1.

Now assume that y ∈ S. Then

s(x) + s(y) = s(s(x) + y) by (1.2)
= s(x + s(y)) since y ∈ S
= x + s(s(y)) by (1.2)

Thus s(y) ∈ S, hence S = N by induction.

Now we can prove

Proposition 1.6 (Commutativity of Addition). For all x, y ∈ N we have x+y =
y + x.

Proof. You know the game by now: for an arbitrary x ∈ N, let S denote the set
of all y ∈ N such that x + y = y + x. By Lemma 1.2, we have 0 ∈ S.

Now assume that y ∈ S. Then

x + s(y) = s(x + y) by (1.2)
= s(y + x) since y ∈ S
= y + s(x) by (1.1)
= s(y) + x by Lemma 1.2

Thus S = N, and we are done.

Now it’s your turn:

Proposition 1.7 (Cancellation Law). If x + z = y + z for some x, y, z ∈ N,
then x = y.

The proof is left as an exercise.

Lemma 1.8. For x, y ∈ N and y 6= 0, we have x + y 6= x.

Proof. Fix y ∈ N with y 6= 0 and set S = {x ∈ N : x + y 6= x}. Then 0 ∈ S
since 0 + y = y 6= 0 by assumption. Now assume that x ∈ S. We have to prove
that s(x) ∈ S. We know that x 6= x+ y. Since s is injective by N3, we conclude
that s(x) 6= s(x + y). But s(x + y) = s(x) + y by definition of addition and by
commutativity.
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This lemma is now needed for the proof of the following result that will
eventually allows us to define an order on the natural numbers.

Theorem 1.9 (Trichotomy Law for Addition). For any x, y ∈ N, exactly one
of the following three statements is true:

(i) x = y;

(ii) x = y + z for some nonzero z ∈ N;

(iii) y = x + z for some nonzero z ∈ N.

Proof. We first show that no two of these statements can hold simultaneously.
Assume that (i) and (ii) are both true. Then x = x + z, contradicting Prop.

1.2.
The claim that (i) and (iii) [or (ii) and (iii)] cannot hold simultaneously is

left as an exercise.
Now we have to prove that, given x, y ∈ N, at least one of these claims is

true. We consider an arbitrary y ∈ N and do induction on x, that is, we put

S = {x ∈ N : (i) or (ii) or (iii) is true}.

We claim that x = 0 ∈ S. If 0 = y, then x = y, hence (i) holds. Assume
therefore that 0 6= y. In this case, y = x + z for z = y since x = 0.

Now we claim that x ∈ S implies s(x) ∈ S, so assume that x ∈ S. Then we
are in exactly one of three cases:

a) x = y; then s(x) = s(y) = y + 1, so (ii) holds with z = 1;
b) x = y + z for some z ∈ N; then s(x) = s(y + z) = y + s(z), so again (ii)

is true.
c) y = x + z for some nonzero z ∈ N. If z = 1, then y = s(x), and (i) holds.

If z 6= 1, then z = s(v) for some nonzero v ∈ N, hence

y = x + z = x + s(v) = s(x) + v,

where we have used Lemma 1.2, so (iii) holds.
Thus if x ∈ S, then s(x) ∈ S, hence S = N by induction, and we are

done.

Finally, a simple but useful observation:

Lemma 1.10. If m,n ∈ N satisfy m + n = 0, then m = n = 0.

Proof. If n = 0, the claim is clear. If n 6= 0, then n = s(x) for some x ∈ N by
Prop. 1.1; this implies 0 = m + n = m + s(x) = s(m + n), contradicting the
axiom N3.
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1.3 Multiplication

We are now going to define how to multiply natural numbers. For the definition
of x · z we use induction. First we put

x · 0 = 0 (1.5)

Now assume that we have defined x · y; then we put

x · s(y) = x · y + x (1.6)

(in other words: we put x · (y + 1) := x · y + x). It should be obvious by now
that the induction principle guarantees that xy is defined for any x, y ∈ N. In
general, we omit the multiplication sign · and write xy instead of x · y. We
shall also write xy + z instead of (xy) + z and agree that we always evaluate
expressions by multiplying first and then adding the products.

Next we prove the basic properties of multiplication:

Lemma 1.11. We have x · 1 = x for all x ∈ N.

Proof. x · 1 = x · s(0) = x · 0 + x = 0 + x = x.

Proposition 1.12 (Left Distributive Law). For all x, y, z ∈ N we have x(y +
z) = xy + xz.

Proof. Take x, y ∈ N and do induction on z. We find

x(y + 1) = x · s(y) by (1.1)
= xy + x by (1.6)
= xy + x · 1 by (1.5).

Next we assume that the left distributive law holds for z and prove that it
also holds for s(z):

x(y + s(z)) = x · (s(y + z)) by (1.2)
= x(y + z) + x by (1.6)
= (xy + xz) + x by assumption
= xy + (xz + x) by Prop. 1.2
= xy + x · s(z) by (1.6)

This proves the claim by induction.

Where there’s a left distributive law, there’s a right distributive law as well:

Proposition 1.13 (Right Distributive Law). We have (x + y)z = xz + yz for
all x, y, z ∈ N.

This proof is left as an exercise. Note that right distributivity would follow
immediately from left distributivity if we already knew that multiplication was
commutative. Fact is, however: we don’t. But it comes right next: we start out
with commutativity for multiplication by 0:
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Lemma 1.14. For all x ∈ N, we have 0 · x = 0.

Proof. Let S = {x ∈ N : 0 · x = 0}; then 0 ∈ S since 0 · 0 = 0 by (1.5). Assume
now that x ∈ S; then

0 · s(x) = 0 · x + 0 by (1.6)
= 0 + 0 since x ∈ S
= 0 by (1.1),

hence s(x) ∈ S and therefore S = N by induction.

and then do induction:

Proposition 1.15 (Commutativity of Multiplication). For all x, y ∈ N, we
have xy = yx.

Yet another exercise:

Proposition 1.16 (Associativity of Multiplication). For x, y, z ∈ N, we have
x(yz) = (xy)z.

And another one:

Proposition 1.17 (Cancellation Law of Multiplication). If xz = yz for x, y,
z ∈ N with z 6= 0, then x = y.

Now that we know how to multiply, we can go forth and define exponenti-
ation an for a, n ∈ N with a 6= 0: we put a0 = 1, and if an is already defined,
then as(n) = an · a. Armed with this definition, we can now prove

1. an is defined for all a, n ∈ N,

2. am+n = aman for a,m, n ∈ N,

3. amn = (am)n for a,m, n ∈ N,

4. anbn = (ab)n for a, b, n ∈ N.

There is one last set of properties of the naturals that we have not yet
touched upon: those based on the relation <.

1.4 N as a well-ordered set

We start by defining the relevant concept. For x, y ∈ N we say that

x ≤ y if there is an n ∈ N such that x + n = y. (1.7)

Remark. If we had used the convention N = {1, 2, 3, . . .}, it would have been
natural to start by defining x < y to be equivalent with x + n = y for some
n ∈ N. Since 0 ∈ N in our approach, we prefer to use ≤ as the fundamental
relation.
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Proposition 1.18. The relation ≤ on N has the following properties:

1. If x ≤ y and y ≤ x then x = y;

2. For all x, y ∈ N, we have x ≤ y or y ≤ x;

3. If x ≤ y and y ≤ z, then x ≤ z.

Proof. Assume that x ≤ y and y ≤ x; then there exist m,n ∈ N such that
x + m = y and y + n = x. This implies x + m + n = x, hence m + n = 0 by the
cancellation law. Now Lemma 1.2 gives us m = n = 0, hence x = y as claimed.

Next let x, y ∈ N. By the trichotomy law, we have x = y, x = y + z or
x + z = y for some (nonzero) z ∈ N. By (1.7), this implies x ≤ y, x ≤ y and
y ≤ x, respectively.

Now assume that x ≤ y and y ≤ z. Then there exist m,n ∈ N such that
x + m = y and y + n = z. This gives x + (m + n) = (x + m) + n = y + n = z,
that is, x ≤ z.

We now define some more relations from (1.7):

1. x ≥ y if y ≤ x;

2. x < y if x ≤ y and x 6= y;

3. x > y if y < x.

We say that a set R is simply ordered if we have a relation < such that the
following conditions are satisfied for all x, y, z ∈ R:

O1 Trichotomy: We either have x < y or x = y or x > y.

O2 Transitivity: if x < y and y < z then x < z.

The proofs of the following claim is now straight forward:

Proposition 1.19. The set N of natural numbers is simply ordered.

Proof. By definition of <, we can’t have x < y and x = y simultaneously, and
the same is true for y < x and y = x. Finally, if we had x < y and y < x, then
x ≤ y and y ≤ x, hence x = y, which again contradicts e.g. x < y. Thus at
most one of the assertions x < y, x = y or x > y is true.

Now we know that x ≤ y or y ≤ x is true; in the first case, x < y or x = y,
in the second case y > x or y = x. This proves that at least on of the assertions
x < y, x = y or x > y holds.

Now assume that x < y and y < z. Then x ≤ y and y ≤ z, hence x ≤ z. If
we had x = z, then y ≤ z = x and x ≤ y imply x = y contradicting x < y. This
proves O2.

Observe that we have actually proved that any set with a relation ≤ satis-
fying 1.4.1, 2, 3 is simply ordered.

Proposition 1.20. For x, y, z ∈ N, < and ≤ have the following properties:
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1. If x < y, then x + z < y + z for z ∈ N and conversely.

2. If x ≤ y then xz ≤ yz for z ∈ N.

3. If x < y and z 6= 0, then xz < yz.

Proof. Exercise.

For a subset S ∈ N, we say that S has a smallest element if there is an s ∈ S
such that s ≤ t for all t ∈ S. The following result is basic (we say that N is
well-ordered):

Theorem 1.21. Every nonempty subset S ∈ N has a smallest element.

Proof. Let S ⊆ N be non-empty, and define

R = {x ∈ N : x ≤ y for all y ∈ S}.

Then 0 ∈ R since 0 ≤ y for all y ∈ N, in particular for all y ∈ S.
Since S is non-empty, there is a y ∈ S; this implies y + 1 /∈ R: otherwise

we would have y + 1 ≤ y, which does not hold (we have y ≤ y + 1 by (1.7), so
y + 1 ≤ y would imply y + 1 = y, hence 1 = 0 and s(0) = 0 in contradiction
with N3).

Thus R contains 0 but R 6= N; the induction axiom then implies that there
must exist an x ∈ R such that x + 1 = s(x) /∈ R. We claim that x is a smallest
element of S.

First, x ∈ R implies x ≤ y for all y ∈ S, so we only need to show that x ∈ S.
Assume x /∈ S; then x ≤ y for all y ∈ S implies x < y (because we can’t have
equality), hence x + 1 = s(x) ≤ y for all y ∈ S, which by definition of R shows
that x + 1 ∈ R in contradiction to the construction of x.

Let us also prove a simple result that will evolve into the Archimedean
property of the reals:

Proposition 1.22. If 0 < x < y are natural numbers, then there exists an
n ∈ N such that nx > y.

Proof. Put n = y + 1.

1.5 Elementary Number Theory

In this section we will develop the number theory known to Euclid. First we
will show that there is a ‘Euclidean algorithm’ on N:

Proposition 1.23. For every a, b ∈ N with b 6= 0, there exist unique numbers
q, r ∈ N with a = bq + r and 0 ≤ r < b.
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Proof. Let us prove uniqueness first. Assume a = bq + r = bq′ + r′ with 0 ≤
r, r′ < b, and assume that r < r′. Then q > q′, and we have r + t = r′ and
q = q′ + u for some t, u ≥ 1. This gives bq′ + bu + r = bq′ + r + t, and the
cancellation law gives t = bu ≥ b and r′ = r + t ≥ b: contradiction.

The existence of q and r is proved by induction on a. If a = 0, then q = r = 0
do it. Assume that a = bq + r with 0 ≤ r < b. Then If r < b − 1, then
a + 1 = bq + (r + 1), and if r = b− 1, then a + 1 = b(q + 1) + 0. This concludes
the proof.

Let a, b be natural numbers. We say that b divides a (and write b | a) if
there is a c ∈ N such that a = bc. A natural number p > 1 is called irreducible
if p = ab for a, b ∈ N implies a = 1 or b = 1, that is, if p has only trivial
factorizations. We say that p is prime if it has the following property: whenever
p | ab for a, b ∈ N, we have p | a or p | b.

Proposition 1.24. Primes are irreducible.

Proposition 1.25. Irreducibles are prime.

Theorem 1.26 (Unique Factorization Theorem).

Proof. Induction.

Proposition 1.27. Assume that a, b ∈ N satisfy gcd(a, b) = 1. If ab = x2 for
some x ∈ N, then a = r2 and b = s2.

1.6 Historical Remarks

Natural numbers 1, 2, 3, . . . have always been regarded as ‘numbers’, with the
exception of Greek mathematicians like Euclid, for whom 1 was the unit and a
number was a proper multiple of 1. In particular, 1 wasn’t a prime number for
Euclid because it wasn’t a number.

The history of 0 is not as simple. The Egyptians had a number system with
base 10, but it was not positional: they had different symbols for 1, 10, 100,
1000 and so on, and for writing e.g. 35 the wrote down three sumbols for 10
and 5 for 1. The Babylonians, on the other hand, developed a positional system
with base 60: they had only one symbol for 1, 60, 3600, . . . , and its value was
determined by its place. The only problem was that they did not have a 0,
so strictly speaking they could not distinguish notationally between 2 and 120.
Later, several writers developed various symbols to denote an empty position,
but this was never used at the end of a number.

Our decimal system was ‘invented’ by the Hindus, who also came up with
the 0. At first, 0 was only regarded as a symbol, not a number, but eventually
Indian mathematicians worked out rules for adding, subtracting, multiplying,
and even dividing by 0.
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The Hindu numerals made it into the Arabic countries around the 8th cen-
tury, and when they were introduced to Europe (and popularized e.g. by Fi-
bonacci) they became known as Arabic numerals. The Arabic word for 0, siphr,
was the origin for both ‘cipher’ and ‘zero’.

Although geometry had been axiomatized by Euclid, the idea of writing
down axioms characterizing natural numbers was perceived first by Dedekind
and Peano. Along with the axiomatization of geometries by Hilbert and the
emergence of the concept of abstract structures (groups, rings and fields), the
desire to axiomatize the whole of mathematics emerged. The original hope that
mathematics could be reduced to a finite set of axioms was dealt a deadly blow
by Gödel, who proved that such an axiom system could not be complete in the
sense that there must exist statements that can neither be proved nor disproved
within such an axiom system.

Exercises

1.1 Consider the set N = {1, 2, 3, . . .} = N\{0} with successor function s(n) = n+1.
Show that this system satisfies all Peano axioms except one – which one?

1.2 Consider the set N = {0} with successor function s : 0 7−→ 1. Show that this
system satisfies all Peano axioms except one – which one?

1.3 Consider the set N = {0} with successor function s : N −→ N : 0 7−→ 0. Show
that this system satisfies all Peano axioms except one – which one?

1.4 Consider the set N = {0, 1} with successor function s : N −→ N mapping
0 7−→ 1 and 1 7−→ 0. Show that this system satisfies all Peano axioms except
one – which one?

1.5 Consider the set N = N ∪ (N + ω), where ω is a symbol, N = {0, 1, 2, . . .} and
N + ω = {0 + ω, 1 + ω, . . .}. Define a successor function s : N −→ N by mapping
n 7−→ n + 1 and n + ω 7−→ (n + 1) + ω for all n ∈ N. Show that this system
satisfies all Peano axioms except one – which one?

1.6 An axiom system is called independent if no axiom can be deduced from the
others. Why do the exercises above show that the Peano axioms are independent?

1.7 Which Peano axioms are satisfied by the ring Z of integers and successor function
z 7−→ z + 1?

1.8 Prove the Cancellation Law (Prop. 1.2) for addition of natural numbers. (Hint:
induction on z.)

1.9 For integers x1, . . . , xn, . . . ∈ N define
Pn

k=1 xk inductively by

1X
k=1

xk = x1 (1.8)

12



and
s(n)X
k=1

=
� nX

k=1

xk

�
+ xn+1. (1.9)

Prove that

n+mX
k=n+1

xk =

mX
k=1

xn+k

nX
k=1

xk +

mX
k=1

xn+k =

n+mX
k=1

xk

nX
k=1

xk +

nX
k=1

yk =

nX
k=1

(xk + yk).

1.10 Prove the following generalization of associativity: the sum
Pn

k=1 xk is by defi-
nition equal to ((((x1 + x2) + x3) + x4) + . . .) + xn; prove that this sum does not
depend on how we place the brackets. A concise formulation of this property is
the following: if x1, . . . , xn is a finite set of natural numbers, and if y1, . . . , yn is
a permutation of the xk, then

Pn
k=1 xk =

Pn
k=1 yk.

1.11 Prove Proposition 1.4

1.12 Prove that the order relation on N has the following properties:

1. x ≥ 0 for all x ∈ N;

2. x < s(y) if and only if x ≤ y, where x, y ∈ N;

3. s(y) ≤ x if and only if y < x, where x, y ∈ N;

1.13 Prove that a
�Pn

k=1 xn

�
=
Pn

k=1(axn) for a, x1, . . . , xn ∈ N.

1.14 Define
Qn

k=1 xk for x1, . . . , xk ∈ N.

1.15 Prove that
Qm

k=1 xk

Qn
k=m+1 xk =

Qn
k=1 xk.

1.16 Prove that
Qn

k=1 xk

Qn
k=1 yk =

Qn
k=1(xkyk).

1.17 Consider the set {1, 2, 3} with the relation < defined by E = {(1, 2), (2, 3), (3, 1)}
(this means that 1 < 2, 2 < 3 and 3 < 1, but not 2 < 1 or 1 < 3. Show that O1
holds, but O2 does not.

1.18 Consider the set {1} with the relation < defined by E = (1, 1) (this means that
we have 1 < 1. Show that O2 holds, but O1 does not.
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