
Chapter 4

The Arithmetic of Z

In this chapter, we start by introducing the concept of congruences; these are
used in our proof (going back to Gauss1) that every integer has a unique prime
factorization. Finally, we discuss the Euclidean Algorithm; we shall see later
that the same method also works polynomial rings K[X] over fields K.

4.1 Divisibility

Just as subtraction was not defined for all pairs of natural numbers (in N, we
could have defined m− n for m,n ∈ N with m ≥ n), division is not defined for
all pairs of nonzero integers. The theory of divisibility studies this observation
in more detail. We say that an integer b ∈ Z divides a ∈ Z (and write b | a) if
there exists an integer q ∈ Z such that a = bq.

The main properties of the divisibility relation follow directly from the def-
inition:

Proposition 4.1. For any integers a, b, c ∈ Z, we have

1. 1 | a, a | a, and a | 0;

2. if a | b and b | c, then a | c;

3. if a | b and a | c, then a | (b± c);

4. if a | b, then (−a) | b, a | (−b), and (−a) | (−b);

5. if a | b and b 6= 0 then |a| ≤ |b|;

6. if a | b and b | a, then |a| = |b|.

Proof. These are formal consequences of the definition:

1. a = a · 1; 0 = 0 · a.
1Carl-Friedrich Gauss: 1777 (Braunschweig, Germany) – 1855 (Göttingen, Germany)
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2. We have b = aq and c = br for some integers q, r ∈ Z; but then c = br =
a(qr), hence a | c.

3. We have b = aq and c = ar for integers q, r; then b± c = a(q ± r) implies
that a | (b± c).

4. If b = aq, then b = aq = (−a)(−q) and −b = a · (−q) = (−a)q.

5. We have b = aq for some q ∈ Z; since b 6= 0, we deduce that q 6= 0, hence
|q| ≥ 1 and therefore |b| = |aq| ≥ |a|.

6. The claim is trivial if a = b = 0. If a 6= 0, then b | a implies b 6= 0, and
similarly b 6= 0 implies a 6= 0. By the preceding result we therefore have
|a| ≤ |b| and |b| ≤ |a|, hence |a| = |b|.

Elements dividing 1 are called units; the units in Z are −1 and +1. First of
all, they are units because they divide 1. Now assume that r ∈ Z is a unit; then
there exists an element s ∈ Z with rs = 1. Clearly r, s 6= 0, hence |r|, |s| ≥ 1. If
|r| > 1, then 0 < |s| < 1, but there are no integers strictly between 0 and 1.

4.2 Congruences

Congruences are a very clever notation invented by Gauss (and published in
1801 in his “Disquisitiones Arithmeticae”) to denote the residue of a number a
upon division by a nonzero integer m. More precisely, he wrote a ≡ b mod m if
m | (a− b). for elements a, b,m ∈ Z.

The rules for divisibility can now be transferred painlessly to congruences:
first we observe

Proposition 4.2. Congruence between integers is an equivalence relation.

Proof. Recall that a relation is called an equivalence relation if it is reflexive,
symmetric and transitive. In our case, we have to show that the relation ≡ has
the following properties:

• reflexivity: a ≡ a mod m;

• symmetry: a ≡ b mod m implies b ≡ a mod m;

• transitivity: a ≡ b mod m and b ≡ c mod m imply a ≡ c mod m

for a, b, c ∈ Z and m ∈ Z \ {0}.
The proofs are straightforward. In fact, a ≡ a mod m means m | (a−a), and

every integerm 6= 0 divides 0. Similarly, a ≡ b mod m is equivalent tom | (a−b);
but this implies m | (b − a), hence b ≡ a mod m. Finally, if a ≡ b mod m and
b ≡ c mod m, then m | (b − a) and m | (c − b), hence m divides the sum
c− a = (c− b) + (b− a), and we find a ≡ c mod m as claimed.
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Since ≡ defines an equivalence relation, it makes sense to talk about equiv-
alence classes. The equivalence class [a] (or [a]m if we want to express the
dependence on the modulus m) of an integer a consists of all integers b ∈ Z
such that b ≡ a mod m; in particular, every residue class contains infinitely
many integers. In the special case m = 3, for example, we have

[0] = {. . . ,−6,−3, 0, 3, 6, . . .},
[1] = {. . . ,−5,−2, 1, 4, 7, . . .},
[2] = {. . . ,−4,−1, 2, 5, 8, . . .},
[3] = {. . . ,−3, 0, 3, 6, 9, . . .} = [0],

etc. Note that [0] = [3] = [6] = . . . (in fact, [0] = [a] for any a ∈ [0]), and
similarly [1] = [4] = . . .. In general, we have [a] = [a′] if and only if a ≡
a′ mod m, that is, if and only if m | (a− a′).

In the case m = 3, there were exactly 3 different residue classes modulo 3,
namely [0], [1], and [2] (or, say, [0], [1], and [−1] since [−1] = [2]). This holds
in general:

Lemma 4.3. For any integer m > 1, there are exactly m different residue
classes modulo m, namely

Proof. We first show that these classes are pairwise distinct. To this end, assume
that [a] = [b] for 0 ≤ a, b < m; this implies b ∈ [a], hence a ≡ b mod m or
m | (b− a): but since |b− a| < m, this can only happen if a = b.

Next, there are no other residue classes: given any class [a], we write a =
mq+r with 0 ≤ r < m (the division algorithm at work again), and then [a] = [r]
is one of the classes listed above.

The set {0, 1, 2, . . . ,m − 1} is often called a complete set of representatives
modulo m for this reason. Sometimes we write r +mZ instead of [r].

The one thing that makes congruences really useful is the fact that we can
define a ring structure on the set of residue classes. This is fundamental, so let
us do this in detail.

The elements of our ring Z/mZ will be the residue classes [0], [1], . . . , [m−1]
modulo m. We have to define an addition and a multiplication and then verify
the ring axioms.
• Addition ⊕: Given two classes [a] and [b], we put [a] ⊕ [b] = [a + b]. We

have to check that this is well defined: assume that [a] = [a′] and [b] = [b′]; then
we have to show that [a+ b] = [a′ + b′]. But this is easy: we have a− a′ ∈ mZ,
say a − a′ = mA, and similarly b − b′ = mB. But then (a + b) − (a′ + b′) =
m(A+B) ∈ mZ, hence [a+ b] = [a′ + b′].

The neutral element is the residue class [0] = mZ, and the inverse element of
[a] is [−a], or, if you prefer, [m−a]. In fact, we have [a]⊕ [0] = [a+0] = [a] and
[a]⊕ [−a] = [a+(−a)] = [0]. The law of associativity and the commutativity are
inherited from the corresponding properties of integers: since e.g. (a+ b) + c =
a+ (b+ c), we have ([a]⊕ [b])⊕ [c] = [a]⊕ ([b]⊕ [c]).
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• Multiplication �: of course we put [a] � [b] = [ab]. The verification that
this is well defined is left as an exercise. The neutral element is the class [1].
• Distributive Law: Again, ([a]⊕ [b])� [c] = [a]� [c]⊕ [b]� [c] follows from

the corresponding properties of integers.

Theorem 4.4. The residue classes [0], [1], . . . , [m− 1] modulo m form a ring
Z/mZ with respect to addition ⊕ and multiplication �.

Now that we have introduced the rings that we will study for some time to
come, we simplify the notation by writing + and · instead of ⊕ and �. Moreover,
we will drop our references to classes and deal only with the integers representing
them; in order to make clear that we are dealing with residue classes, we write
≡ instead of = and add a “mod m” at the end. What this means in practice is
that we identify Z/mZ with the set of integers {0, 1, . . . ,m− 1}.

4.3 Unique Factorization in Z
An integer n 6= 0,±1 is called irreducible if it only admits trivial factors, that
is, if n = ab for a, b ∈ Z implies a = ±1 or b = ±1. In elementary number
theory, irreducible elements are often called primes; we shall reserve that name
for integers p 6= 0,±1 with the property that p | ab for a, b ∈ Z implies p | a or
p | b.

For example, 2 is prime because 2 | ab implies that 2 | a or 2 | b (proof by
contradiction).

The first step in proving unique factorization is showing that primes and
irreducibles are the same. One direction is immediate:

Proposition 4.5. Primes are irreducible.

Proof. Assume not. Then p = rs with r, s ∈ Z nonunits. In particular, p | rs.
If we can show that p - r and p - s, then p cannot be prime and we have won.

So assume that p | r, i.e. r = pt for some t ∈ Z; since we also have p = rs,
we find p = rs = pst, hence st = 1, and this shows that s and t are units. This
contradicts the assumption that s is a nonunit: thus p - r. Similarly, p - s.

Before we can prove that irreducibles are prime, we need

Proposition 4.6. If p is irreducible, then Z/pZ is a field.

Proof. We have to show that if [a] 6= [0], i.e., if 0 < a < p, then there exists a
residue class [b] such that [ab] = [1].

This is trivial if a = 1, so assume a > 1 and put r1 = dp/ae; then 0 ≤
ar1 − p < a. If we had ar1 − p = 0, then the fact that p is irreducible implies
a = 1 or a = p, contradicting our assumption. Thus 0 < ar1 − p < a.

If a1 = ar1 − p = 1, then b = r1 is the inverse of a; if a1 > 1, then put
r2 = dp/a1e and repeat the above argument. If a1r2− p = 1, then [ar1r2] = [1],
and b = r1r2 is the desired inverse of a. Since ai decreases by at least 1 in each
step, the process must eventually terminate.
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Fields F have very nice properties; one of them is that linear equations
ax = b with a, b ∈ F and a 6= 0 always have a unique solution: in fact, since
a 6= 0, it has an inverse element a−1 ∈ F , and multiplying through by a−1 we
get x = a−1b. This does not work in general rings: the equation 2x = 1 does
not have a solution in Z/4Z, and the linear equation 2x = 2 has two solutions,
namely x = [1] and x = [3].

The main result on which unique factorization will be built is the following:

Proposition 4.7. Irreducibles in Z are prime.

Proof. Assume that p is irreducible and that p | ab. If p - a and p - b, then [a] and
[b] are invertible modulo p; but then [ab] has an inverse (if [a][r] = [b][s] = [1],
then [ab][rs] = [1]), and therefore p - ab. This proves that p | a or p | b.

Our first result in the direction of the Unique Factorization Theorem is quite
innocent:

Proposition 4.8. Every integer n > 1 has a prime factorization.

Proof. We proceed by induction. We call an integer n “nice” if it has a prime
factorization. Clearly n = 2 is nice because 2 is prime. Now assume that all
integers < n are nice; since n > 1, it is either prime (and thus nice) or it isn’t;
but if n is not prime, then n is not irreducible (since primes and irreducibles are
the same), so n has proper divisors, say n = ab with a, b ∈ N. Since a, b < n,
these factors are nice, hence they have prime factorizations, say a = p1 · · · pr
and b = q1 · · · qs. But then n = p1 · · · prq1 · · · qs is a prime factorization of n.

We also can attach a prime factorization to negative integers: if n < 0 and
−n = p1 · · · pr is a prime factorization of −n > 0, then n = −p1 · · · pr is a prime
factorization of n.

Note that we have talked about “a” prime factorization; as a matter of fact,
the prime factorization of an integer n is essentially unique, but this needs to
be proved.

Again you may think that this is obvious; after all, if, say, 11 divides an
integer n, then there cannot be a prime factorization of n that does not contain
11 as a factor. Or can there?

Consider the set S = {1, 5, 9, 13, . . .} of positive integers of the form 4n+ 1.
Let us call a number p > 1 in S irreducible if its only divisors in S are 1 and
p. Thus 5 and 9 are irreducible, while 25 is not. Here every integer has a
factorization into irreducibles, but it is not unique: for example, 21 · 33 = 9 · 77,
and 9, 21, 33 and 77 are all irreducible in S according to our definition. The
reason why unique factorization fails is the existence of irreducibles that aren’t
prime: clearly 9 | 21 · 33 since 21 · 33 = 9 · 77, but 9 does not divide 21 or 33.

While the set S considered above is multiplicatively closed (if s, s′ ∈ S, then
ss′ ∈ S), it is not a ring. The next example is closer to being a ring: the set 2Z
of even integers would be a ring if it had a unit element (a ring without identity
is sometimes called a rng). The rng 2Z does not have unique factorization into
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irreducibles: We have 60 = 2 ·30 = 6 ·10, and each of these factors is irreducible
(reducible elements in 2Z are necessarily divisible by 4).

The theorem of unique factorization asserts that every integer has a prime
factorization, and that it is unique up to the order of the factors.

Theorem 4.9. Every integer n ≥ 2 has a prime factorization n = p1 · · · pr
(with possibly repeated factors). This factorization is essentially unique, that is:
if n = p1 · · · pr and n = q1 · · · qs are prime factorizations of an integer n, then
r = s, and we can reorder the qj in such a way that pj = qj for 1 ≤ j ≤ r.

A partial result in the direction of Theorem 4.9 can already be found in
Euclid’s elements; the first explicit statement and proof was given by Gauss in
1801.

Proof. We already know that prime factorizations exist, so we only have to
deal with uniqueness. This will be proved by induction on min{r, s}, i.e. on
the minimal number of prime factors of n. We may assume without loss of
generality that r ≤ s.

If r = 0, then n = 1, and n = 1 = q1 · · · qs implies s = 0.
Now assume that every integer that is a product of at most r − 1 prime

factors has a unique prime factorization, and consider n = p1 · · · pr = q1 · · · qs.
Since p1 is a prime that divides n = q1 · · · qs, it must divide one of the factors,
say p1 | q1 (after rearranging the qi if necessary). But q1 is prime, so its only
positive divisors are 1 and q1; since p1 is a prime, it is a nonunit, and we conclude
that p1 = q1. Canceling p1 shows that p2 · · · pr = q2 · · · qs, and by induction
assumption we have r = s, and pj = qj after rearranging the qi if necessary.

Remark. There is a simple reason for doing induction on the minimal number
of prime factors and not simply on the number of prime factors of n: the fact
that the number of prime factors of an integer is well defined is a consequence
of the result we wanted to prove!

Some Applications

The Infinitude of Primes

How many primes are there? Euclid gave an ingenious proof that there are
infinitely many:

Proposition 4.10. There are infinitely many primes.

Proof. We give a proof by contradiction. Assume that there are only finitely
many primes, namly p1 = 2, . . . , pr, and consider the integer N = p1 · · · pr + 1.
Then N > 1, hence it is divisible by a prime p. This prime p is not in our list:
if we had p = pi, then p | N and p | N − 1 = p1 · · · pi · · · pr, hence p divides
1 = N − (N − 1): contradiction, because p is a prime, hence can’t be a unit by
definition.
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Narkiewicz’s book ‘The Development of the Prime Number Theorem’ con-
tains several proofs for the infinitude of Primes.

Proof 2. (Hermite2) For n = 1, 2, . . ., let qn denote the smallest prime divisor
of n! + 1. Then qn > n, hence there are infinitely many primes.

Proof 3 (Stieltjes3 1890): Assume that there are only finitely many primes,
and let D denote their product. Let D = mn be any factorization of D with
m,n ∈ N. Then for any prime p, we have p | m or p | n, but not both; thus p
does not divide m+ n, so m+ n can’t have any prime divisor: contradiction.

What I don’t like here is that if you take the factorization D = D · 1, then
you get back Euclid’s proof. Why on earth would anyone want to complicate a
simple proof?

We have already seen that integers are squares of rational numbers if and
only if they are squares of integers. Here we shall use unique factorization to
show that

√
p is irrational. For assume not: then p = r2/s2 for r, s ∈ N, and

assume that r and s are coprime (if they are not, cancel). Thus ps2 = r2. Thus
p | r2, and since p is prime, we must have p | r, say r = pt. Then ps2 = p2t2,
hence s2 = pt2. But then p | s2, hence p | s since p is prime, and this is a
contradiction, since we now have shown that p | r and p | s although we have
assumed that they are coprime.

4.4 Greatest Common Divisors in Z
We will now introduce greatest common divisors: we say that d is a greatest
common divisor of a, b ∈ Z and write d = gcd(a, b) if d satisfies the following
two properties:

1. d | a, d | b;

2. if e ∈ Z satisfies e | a and e | b, then e | d.

We can use the unique factorization property to give a formula for the gcd
of two integers. Before we do so, let us introduce some notation. We can write
an a ∈ Z as a product of primes. In fact fact we can write a = ±

∏
pai
i , where

the product is over all irreducible elements p1, p2, p3, . . . , and where at most
finitely many ai are nonzero. In order to avoid the ± in our formulas, let us
restrict to positive integers from now on.

Lemma 4.11. For integers a, b ∈ N we have b | a if and only if bi ≤ ai for all
i, where a =

∏
pai
i and b =

∏
pbi
i are the prime factorizations of a and b.

Proof. We have b | a if and only if there is a c ∈ N such that a = bc. Let
c =

∏
pci
i be its prime factorization. Then ci ≥ 0 for all i, and ai = bi + ci,

hence b | a is equivalent to ai ≥ bi for all i.
2Charles Hermite, 1822 (Dieuze, Lorraine, France) – 1901 (Paris).
3Thomas Jan Stieltjes, 1856 (Zwolle, The Netherlands) – 1894 (Toulouse, France)
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Here’s our formula for gcd’s:

Theorem 4.12. The gcd of two nonzero integers

a =
∏

pai
1 andb =

∏
pbi
i

is given by
d =

∏
p
min{ai,bi}
i .

Proof. We have to prove the two properties characterizing gcd’s:

1. d | a and d | b. But this follows immediately from Lemma 9.7.

2. If d′ | a and d′ | b, then d′ | d. In fact, write down the prime factorization
d′ =

∏
p
d′i
i of d′. Then d′ | a and d′ | b imply d′i ≤ min(ai, bi) = di, hence

d′ | d.

Now assume that d and d′ are gcd’s of a and b. Then d | d′ by 2. since d′ is
a gcd, and d′ | d since d is a gcd, hence d′ = ±d.

For the ring Z of integers, we have much more than the mere existence of
gcd’s: the gcd of two integers a, b ∈ Z has a “Bezout representation”,4 that is,
if d = gcd(a, b), then there exist integers m,n ∈ Z such that d = am+ bn.

Theorem 4.13 (Bezout’s Lemma). Assume that d = gcd(a, b) for a, b ∈ Z;
then d has a Bezout representation.

Proof. Consider the set D = mZ + nZ = {am + bn : a, b ∈ Z}. Clearly D is
a nonempty set, and if c ∈ D then we also have −c ∈ D. In particular, D
contains positive integers. Let d be the smallest positive integer in D; we claim
that d = gcd(m,n). There are two things to show:
Claim 1: d is a common divisor of m and n. By symmetry, it is sufficient to
show that d | m. Write m = rd+ s with 0 ≤ s < d; we find d = am+ bn, hence
s = rd − m = r(am + bn) − m = (ra − 1)m + bn ∈ D. The minimality of d
implies s = 0, hence d | m.
Claim 2: if e is a common divisor of m and n, then e | d. Assume that e | m
and e | n. Since d = am+ bn, we conclude that e | d.

The existence of the Bezout representation is a simple consequence of the
fact that d ∈ D.

Note that the key of the proof is the existence of a division with remainder.
Bezout’s Lemma can be used to give an important generalization of the

property p | ab =⇒ p | a or p | b of primes p:

Proposition 4.14. If m | ab and gcd(m, b) = 1, then m | a.

Proof. Write ab = mn; by Bezout, there are x, y ∈ Z such that mx + by = 1.
Multiplying through by a gives a = max + aby = max + mny = m(ax + ny),
that is, m | a.

4Etienne Bezout: 1730 (Nemours, France) – 1783 (Basses-Loges, France)
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Finally, observe that canceling factors in congruences is dangerous: we have
2 ≡ 8 mod 6, but not 1 ≡ 4 mod 6. Here’s what we’re allowed to do:

Proposition 4.15. If ac ≡ bc mod m, then a ≡ b mod m
gcd(m,c) .

Proof. We have m | (ac−bc) = c(a−b). Write d = gcd(m, c), m = dm′, c = dc′,
and note that gcd(m′, c′) = 1. From dm′ | dc′(a − b) we deduce immediately
that m′ | c′(a− b); since gcd(m′, c′) = 1, we even have m′ | (a− b) by Prop 4.14,
i.e. a ≡ b mod m

gcd(m,c) .

Proof 4 of the Infinitude of Primes. Let Fn = 22n

+ 1 denote the nth Fermat
number. We claim: If m < n, then Fm | (Fn − 2). In fact, Fn − 2 = 22n−1 is
divisible by 22m+1 − 1 = (22m − 1)Fm. Thus gcd(Fm, Fn) | (Fn, Fn− 2) = 2, but
Fermat numbers are odd, hence they are coprime.

4.5 The Euclidean Algorithm

In most modern textbooks, Unique Factorization is proved using the Euclidean
algorithm; it has the advantage that a similar proof can also be used for other
rings, e.g. polynomial rings K[X] over fields K. The Euclidean algorithm
is a procedure that computes the gcd of integers without using their prime
factorization (which may be difficult to obtain if the numbers involved are large).
Moreover, it allows us to compute a Bezout representation of this gcd (note that
our proof of Thm. 4.13 was an existence proof, giving no hint at how to compute
such a representation).

Given integers m and n, there are uniquely determined integers q1 and r1
such that m = q1n+ r1 and 0 ≤ r1 < n. Repeating this process with n and r1,
we get n = r1q2 + r2 with 0 ≤ r2 < r1, etc. Since n > r1 > r2 > . . . ≥ 0, one of
the ri, say rn+1, must eventually be 0:

m = q1n+ r1 (4.1)
n = q2r1 + r2 (4.2)
r1 = q3r2 + r3 (4.3)

. . .

rn−2 = qnrn−1 + rn (4.4)
rn−1 = qn+1rn (4.5)

Example: m = 56, n = 35

56 = 1 · 35 + 21
35 = 1 · 21 + 14
21 = 1 · 14 + 7
14 = 2 · 7
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Note that the last ri that does not vanish (namely r3 = 7) is the gcd of m
and n. This is no accident: we claim that rn = gcd(m,n) in general. For a
proof, we have to verify two things:

Claim 1: rn is a common divisor of m and n. Equation (4.5) shows rn |
rn−1; plugging this into (4.4) we find rn | rn−2, and going back we eventually
find rn | r1 from (4.3), rn | n from (4.2) and finally rn | m from (4.1). In
particular, rn is a common divisor of m and n.

Claim 2: if e is a common divisor of m and n, then e | rn. This is proved
by reversing the argument above: (4.1) shows that e | r1, (4.2) then gives e | r2,
and finally we find e | rn from (4.5) as claimed.

The Euclidean algorithm does more than just compute the gcd: take our
example m = 56 and n = 35; writing the third line as gcd(m,n) = 7 = 21−1 ·14
and replacing the 14 by 14 = 35 − 1 · 21 coming from the second line we get
gcd(m,n) = 21 − 1 · (35 − 1 · 21) = 2 · 21 − 1 · 35. Now 21 = 56 − 1 · 35 gives
gcd(m,n) = 2 · (56− 1 · 35)− 1 · 35 = 2 · 56− 3 · 35, and we have found a Bezout
representation of the gcd of 56 and 35.

This works in complete generality: (4.4) says rn = rn−2 − qnrn−1; the line
before, which rn−1 = rn−3 − qn−1rn−2, allows us to express rn as a Z-linear
combination of rn−2 and rn−3, and going back we eventually find an expression
of rn as a Z-linear combination of a and b.

Bezout representations have an important practical application: they allow
us to compute multiplicative inverses in Z/pZ. In fact, let [a] denote a nonzero
residue class modulo p; since Z/pZ is a field, [a] must have a multiplicative
inverse, that is, there must be a residue class [b] such that [ab] = [1]. Since there
are only finitely many residue classes, this can always be done by trial and error
(unless p is large): for example, let us find the multiplicative inverse of [2] in
Z/5Z: multiplying [2] successively by [1], [2], [3], [4] we find [2] · [3] = [6] = [1];
thus [2]−1 = [3] (we occasionally also write 1

2 ≡ 3 mod 5).
Computing the inverse of [2] in Z/pZ is actually always easy: note that we

want an integer b such that [2b] = [1]; but [1] = [p + 1], hence we can always
take b = p+1

2 .
In general, however, computing inverses is done using Bezout representa-

tions. Assume that gcd(a, p) = 1 (otherwise there is no multiplicative inverse),
compute integers x, y ∈ Z such that 1 = ax+py; reducing this equation modulo
p gives 1 ≡ ax mod p, i.e., [a][x] = [1], or [a]−1 = [x].

Exercises

4.1 Prove that 2 | n(n + 1) for all n ∈ N
a) using induction
b) directly.

4.2 Prove that 3 | n(n2 − 1) for all n ∈ N. Generalizations?

4.3 Prove that 8 | (n2 − 1) for all odd n ∈ N.
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4.4 Prove or disprove: if n | ab and n - a, then n | b.

4.5 Show that there are arbitrary long sequences of composite numbers (Hint: ob-
serve that 2 · 3 + 2 and 2 · 3 + 3 can be seen to be composite without performing
any division; generalize!)

4.6 Show that divisibility defines a partial order on Z by writing a ≤ b if b | a.

4.7 Show that, for integers a, b, c, d, m ∈ Z with m > 0, we have

• a ≡ b mod m =⇒ a ≡ b mod n for every n | m;

• a ≡ b mod m and c ≡ d mod m =⇒ a+c ≡ b+d mod m and ac ≡ bd mod m;

• a ≡ b mod m =⇒ ac ≡ bc mod m for any c ∈ Z.

4.8 Show that there are infinitely many primes of the form 3n− 1.

4.9 Try to extend the above proof to the case of primes of the form 3n + 1 (and
5n− 1). What goes wrong?

4.10 Show that primes p = c2 + 2d2 satisfy p = 2 or p ≡ 1, 3 mod 8.

4.11 Show that primes p = c2 − 2d2 satisfy p = 2 or p ≡ 1, 7 mod 8.

4.12 Show that primes p = c2 + 3d2 satisfy p = 3 or p ≡ 1 mod 3.

4.13 Compute d = gcd(77, 105) and write d as a Z-linear combination of 77 and 105.

4.14 Check the addition and multiplication table for the ring Z/3Z:

+ 0 1 2

0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2

0 0 0 0
1 0 1 2
2 0 2 1

4.15 Compute addition and multiplication tables for the rings Z/5Z and Z/6Z.

4.16 Compute the multiplicative inverse of [17] in Z/101Z.

4.17 Compute gcd(2m − 1, 2n − 1) for small values of m, n ≥ 1 until you discover a
general formula for d.

4.18 Let U1 = U2 = 1, and Un+1 = Un + Un−1 denote the Fibonacci numbers. Find
a formula for gcd(Um, Un).

4.19 Show that the Fermat numbers Fn = 22n

+ 1 are pairwise coprime.

4.20 Show that there are infinitely many primes of the form p = 4n + 3.

4.21 Show that there are infinitely many primes of the form p = 3n + 2.
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4.22 Compute gcd(x2 + 2x + 2, x2 − x− 2) over Z/mZ for m = 2, 3, 5 and 7, and find
its Bezout representation.

4.23 Let a, b ∈ N be coprime, and let r ∈ N be a divisor of ab. Put u = gcd(a, r) and
v = gcd(b, r), and show that r = uv.

4.24 Assume that Mp = 2p − 1 is a prime. List the complete set of (positive) divisors
of Np = 2p−1Mp, and compute their sum. Conclude that if Mp is prime, then
Np is a perfect number (a number n is called perfect if the sum of its (positive)
divisors equals 2n).

Euler later proved that every even perfect number has the form 2p−1Mp for some
Mersenne prime Mp. It is conjectured (but not known) that odd perfect numbers
do not exist.

4.25 Compute the last two digits of 2719.

4.26 For primes p ∈ {3, 5, 7, 11, 13}, compute A ≡ ( p−1
2

)! mod p. Can you find a
pattern? If not, compute B ≡ A2 mod p. Formulate a conjecture.

4.27 Check which of the primes p ∈ {3, 5, 7, 11, 13} can be written as p = a2 + b2 with
integers a, b ∈ N (e.g. 5 = 12 + 22). Formulate a conjecture.

4.28 For some small primes p = 4n + 1, compute the smallest residue (in absolute
value) of a mod p, where a =

(
2n
n

)
. (Example: for p = 5, we have n = 1 and(

2
1

)
= 2 ≡ 2 mod 5.) Compare with the results from the preceding Exercise.

Formulate a conjecture and test it for a few more primes.

4.29 a) Given a 5-liter jar and a 3-liter jar and an unlimited supply of water, how do
you measure out 4 liters exactly?
b) Can you also measure out 1, 2 and 3 liters?
c) Which quantities can you measure out if you are given a 6-liter and a 9-liter
jar?
d) Formulate a general conjecture. Can you prove it (at least partially)?
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Chapter 5

Diophantine Equations

In this chapter, we will give a couple of applications of the number theory
we have developed so far: the theorem of Girard1-Fermat2 that primes of the
form 4n + 1 are sums of two squares, the solution of the diophantine equation
x2 + y2 = z2, and Fermat’s Last Theorem for the exponent 4.

5.1 Fermat’s Two-Squares Theorem

A well known theorem first stated by Girard, and probably first proved by
Fermat (the first known proof is due to Euler) concerns primes that are sums of
two squares, such as 5 = 12 +22 or 29 = 22 +52. The following characterization
of such primes is a simple consequence of the notion of congruences; the converse
is also true, but much harder to prove.

Proposition 5.1. If a prime p is the sum of two integral squares, then p = 2
or p ≡ 1 mod 4.

Proof. There are 4 residue classes modulo 4; their squares are [0] = [0]2 and
[1] = [1]2, and in fact the squares [2]2 = [0] and [3]2 = [1] of the remaining
classes don’t produce new ones.

Now assume that p = a2 + b2. Since a2, b2 ≡ 0, 1 mod 4, we find that a2 + b2

must be congruent modulo 4 to one of 0 = 0+0, 1 = 1+0 = 0+1, or 2 = 1+1,
that is, p ≡ 0, 1, 2 mod 4. Since no prime is congruent to 0 mod 4, and since 2 is
the only prime ≡ 2 mod 4, we even have p = 2 or p ≡ 1 mod 4 as claimed.

For the converse, we need to know when [−1] is a square in Z/pZ for primes
p. Experiments show that [−1] is not a square modulo 3, 7, or 11, and that
[2]2 = [−1] for p = 5, and [5]2 = [−1] for p = 13. The general result is

1Albert Girard (?), 1595 (St Mihiel, France) – 1632 (Leiden, Netherlands)
2Pièrre de Fermat, ca. 1607 (Beaumont-de-Lomagne, near Toulouse, France) –1665 (Cas-

tres, France)
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Proposition 5.2. Let p be an odd prime; then the congruence a2 ≡ −1 mod p
has a solution if and only if p ≡ 1 mod 4.

For the proof, we need some auxiliary results.

Proposition 5.3 (Wilson’s Theorem). For p > 1, we have (p−1)! ≡ −1 mod
p if and only if p is a prime.

Proof. Let p be a prime; the claim is trivial if p = 2, so assume that p is odd.
The idea is to look at pairs of the elements of (Z/pZ)×. In fact, for every
a ∈ (Z/pZ)× there is an element a−1 ∈ (Z/pZ)× such that a · a−1 ≡ 1 mod p.
In general, [a] and [a−1] are different: [a] = [a−1] implies [a2] = [1], so this can
only happen (and does in fact happen) if [a] = [1] or [a] = [−1] = [p− 1] (here
we use that Z/pZ is a field; in fields, polynomials of degree 2 such as x2 − 1
have at most 2 roots).

Thus (Z/pZ)×\{[−1], [+1]} is the union of pairs {[a], [a−1]} with [a] 6= [a−1],
hence the product over all elements of (Z/pZ)× \ {[−1], [+1]} must be [1]. We
can get [(p − 1)!] by multiplying this product with the two missing classes [1]
and [−1], and this gives the claimed result [(p− 1)!] = [−1].

We still have to prove the converse: assume that (n − 1)! ≡ −1 mod n; if p
is a prime divisor of n, this congruence implies (n− 1)! ≡ −1 mod p. But p < n
also implies that p occurs as a factor of (n− 1)! on the left hand side, hence we
would have 0 ≡ (n− 1)! mod p. But then 0 ≡ −1 mod p, a contradiction.

Note that Wilson’s theorem provides us with a primality test; unfortunately
the only known way to compute (n− 1)! is via n− 2 multiplications, so it takes
even longer than trial division!

Proposition 5.4. Let p be an odd prime and put a = (p−1
2 )!; then we have

a2 ≡ (−1)(p+1)/2 mod p. In particular, a ≡ ±1 mod p if p ≡ 3 mod 4, and
a2 ≡ −1 mod p if p ≡ 1 mod 4.

Proof. We start with Wilson’s theorem (p− 1)! ≡ −1 mod p; if, in the product
(p−1)!, we replace the elements p+1

2 , p+3
2 , . . . , p−1 by their negatives −p+1

2 ≡
p−1
2 , −p+3

2 ≡ p−3
2 , . . . , −(p − 1) ≡ 1 mod p, then we have introduced exactly

p−1
2 factors −1; thus (p − 1)! ≡ (−1)(p−1)/2a2 mod p with a = (p−1

2 )!). This
proved the claim.

Now we can prove Proposition 5.2: if p ≡ 1 mod 4, then we have just con-
structed a solution of the congruence a2 ≡ −1 mod p, so assume conversely
that this congruence is solvable. Raising both sides to the p−1

2 -th power gives
1 ≡ ap−1 ≡ (−1)(p−1)/2 mod p, and since 1 6≡ −1 mod p for odd primes p, we
must have (−1)(p−1)/2 = 1, hence p ≡ 1 mod 4.

The solvability of x2 ≡ −1 mod p is the first of two steps in our proof
of the Theorem of Girard-Fermat; the second one is a result due to Birkhoff,
rediscovered by Aubry, and named after Thue:
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Proposition 5.5. Given an integer a not divisible by p, there exist x, y ∈ Z
with 0 < |x|, |y| < √p such that ay ≡ x mod p.

Proof. Let f be the smallest integer greater than
√
p, and consider the residue

classes {[u + av] : 0 ≤ u, v < f} modulo p. There are f2 > p such expressions,
but only p different residue classes, hence there must exist u, u′, v, v′ such that
u + av ≡ u′ + av′ mod p. Put x = u − u′ and y = v′ − v; then x ≡ ay mod p,
and moreover −f < x, y < f .

Now we can prove

Theorem 5.6 (Girard-Fermat-Euler). Every prime p ≡ 1 mod 4 is a sum
of two integral squares.

Proof. Since p ≡ 1 mod 4, there is an a ∈ Z such that a2 ≡ −1 mod 4. By
Thue’s result, there are integers x and y such that ay ≡ x mod p and 0 <
x, y <

√
p. Squaring gives −y2 ≡ x2 mod p, that is, x2 + y2 ≡ 0 mod p. Since

0 < x2, y2 < p, we find 0 < x2 +y2 < 2p; since x2 +y2 is divisible by p, we must
have x2 + y2 = p.

5.2 Quadratic Equations

Next we will apply the Unique Factorization Theorem to the solution of the
diophantine equation

x2 + y2 = z2

in integers x, y, z ∈ Z. Such triples of solutions are called Pythagorean3 triples.
The most famous of these triples is of course (3, 4, 5). It is quite easy to give
formulas for producing such triples: for example, take x = 2mn, y = m2 − n2

and z = m2 +n2 (special cases were known to the Babylonians, the general case
occurs in Euclid). It is less straightforward to verify that there are no other
solutions (this was first done by the Arabs in the 10th century).

Assume that (x, y, z) is a Pythagorean triple. If d divides two of these, it
divides the third, and then (x/d, y/d, z/d) is another Pythagorean triple. We
may therefore assume that x, y and z are pairwise coprime; such triples are
called primitive. In particular, exactly one of them is even.
Claim 1. The even integer must be one of x or y. In fact, if z is even, then
x and y are odd. Writing x = 2X + 1, y = 2Y + 1 and z = 2Z, we find
4X2 + 4X + 4Y 2 + 4Y + 2 = 4Z2: but the left hand side is not divisible by 4:
contradiction.

Exchanging x and y if necessary we may assume that x is even. Now we
transfer the additive problem x2 +y2 = z2 into a multiplicative one (if we are to
use unique factorization, we need products, not sums) by writing x2 = z2−y2 =
(z − y)(z + y).
Claim 2. gcd(z − y, z + y) = 2. In fact, put d = gcd(z − y, z + y). Then
d divides z − y and z + y, hence their sum 2z and their difference 2y. Now

3Pythagoras of Samos (ca. 569 – 475 BC.).
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gcd(2y, 2z) = 2 gcd(y, z) = 2, so d | 2; on the other hand, 2 | d since z − y and
z + y are even since z and y are odd. Thus d = 2 as claimed.

This is the point where Unique Factorization comes in:

Proposition 5.7. Let a, b ∈ N be coprime integers such that ab is a square.
Then a and b are squares.

Proof. Write down the prime factorizations of a and b as

a = pa1
1 · · · par

r , b = qb11 · · · qbs
s .

Now a and b are coprime, so the set of pi and the set of qj are disjoint, and we
conclude that the prime factorization of ab is given by

ab = pa1
1 · · · par

r q
b1
1 · · · qbs

s .

Since ab is a square, all the exponents in the prime factorization of ab must
be even. This implies that the ai and the bj are even, therefore a and b are
squares.

Corollary 5.8. Let a, b ∈ N be integers with gcd(a, b) = d such that ab is a
square. Then a/d and b/d are squares.

Proof. Apply the proposition to the pair a/d and b/d.

Applying the corollary to the case at hand (and observing that z − y ∈ N,
since z + y > 0 and (z − y)(z + y) = x2 > 0) we find that there exist m,n ∈ N
such that z−y = 2n2 and z+y = 2m2. Adding and subtracting these equations
gives z = m2 + n2 and y = m2 − n2, and from x2 = (z − y)(z + y) = m2n2 and
x ∈ N we deduce that x = 2mn.

Note that we must have gcd(m,n) = 1: in fact, any common divisor of m
and n would divide x, y and z contradicting our assumption that our triple be
primitive. We have shown:

Theorem 5.9. If (x, y, z) is a primitive Pythagorean triple with x even, then
there exist coprime integers m,n ∈ N such that x = 2mn, y = m2 − n2 and
z = m2 + n2.

Note that if y is even, then the general solution is given by x = m2 − n2,
y = 2mn and z = m2 + n2. Moreover, if we drop the condition that the triples
be primitive then the theorem continues to hold if we also drop the condition
that the integers m,n be relatively prime.

Lagrange’s Trick

The same technique we used for solving x2 + y2 = z2 can be used to solve
equations of the type x2 + ay2 = z2: just write the equation in the form ay2 =
(z − x)(z + x) and use unique factorization.

Equations like x2 + y2 = 2z2 at first seem intractable using this approach
because we can’t produce a difference of squares. Lagrange, however, saw that

42



in this case multiplication by 2 saves the day because (2z)2 = 2x2 + 2y2 =
(x + y)2 + (x − y)2, hence (2z − x − y)(2z + x + y) = (x − y)2, and now the
solution proceeds exactly as for Pythagorean triples.

Let us now show that we can do something similar for any equation of type
AX2 +BY 2 = CZ2 having at least one solution. First, multiplying through by
A shows that it is sufficient to consider equations X2 + aY 2 = bZ2. Assume
that (x, y, z) is a solution of this equation. Then

(bzZ)2 = bz2X2 + abz2Y 2

= (x2 + ay2)X2 + (ax2 + a2y2)Y 2

= (xX + ayY )2 + a(yX − xY )2.

Thus a(yX − xY )2 = (bzZ)2 − (xX + ayY )2 is a difference of squares, and we
can proceed as for Pythagoren triples. We have proved:

Theorem 5.10. If the equation ax2 + by2 = cz2 has a nontrivial solution
in integers, then this equation can be factored over the integers (possibly after
multiplying through by a suitable integer).

5.3 Fermat’s Last Theorem for Exponent 4

The solution of x2 + y2 = z2 will help us prove that the diophantine equation

X4 + Y 4 = Z4 (5.1)

has only trivial solutions, namely those with X = 0 or Y = 0. As a matter of
fact, it is a lot easier to prove more, namely that

X4 + Y 4 = Z2 (5.2)

has only trivial solutions (this is more: if X4 +Y 4 cannot be a square, it cannot
be a fourth power). The proof is quite involved and uses a technique that Fermat
called infinite descent.

In a nutshell, the idea behind infinite descent is the following: if we want to
prove that a certain diophantine equation is impossible in N, it is sufficient to
show that for every solution in natural numbers there is another solution that is
“smaller”, which eventually leads to a contradiction because there is no natural
number smaller than 1.

Fermat used this idea to give a proof of

Theorem 5.11. The Fermat equation (5.2) for the exponent 4 does not have
any integral solution with XY Z 6= 0.

Proof. Assume that X,Y, Z ∈ N \ {0} satisfy (5.2); we may (and will) assume
that these integers are pairwise coprime (otherwise we can cancel common di-
visors). Now we vaguely follow our solution of the Pythagorean equation: Z
must be odd (if Z were even, then X and Y would have to be odd, and we get
a contradiction as in the proof of Theorem 5.9).
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Thus we may assume that X is odd and Y is even. Since (X2, Y 2, Z) is a
Pythagorean Triple, there exist integersm,n such thatX2 = m2−n2, Y 2 = 2mn
and Z = m2 +n2. Clearly gcd(m,n) divides both X and Y , hence m and n are
coprime; moreover, since X is odd, we have 1 ≡ X2 = m2 − n2 mod 4, which
implies that m is odd and n = 2k is even. Thus (Y/2)2 = mk with m and k
coprime, hence m = a2 and k = b2, giving X2 = a4 − 4b4.

Now we repeat the trick: from X2 + 4b4 = a4 we see that (X, 2b2, a2) is
a Pythagorean triple; thus X = m2

1 − n2
1, 2b2 = 2m1n1 and a2 = m2

1 + n2
1,

where m1 and n1 are (necessarily coprime) positive integers. From m1n1 = b2

we deduce that m1 = r2 and n1 = s2, hence a2 = r4 + s4, and we have found a
new solution (a, r, s) to our equation Z2 = X4 + Y 4.

Since Z = m2 + n2 = a4 + 4b4, we find that 0 < a < Z; this means that for
every solution (X,Y, Z) in natural numbers there exists another solution with
a smaller Z. This is impossible, so there can’t be a nontrivial solution to the
Fermat equation in the first place.

Exercises

5.1 Solve the diophantine equation x2 + 2y2 = z2.

5.2 Solve the diophantine equation x2 − 2y2 = z2.

5.3 Solve the diophantine equation x2 + y2 = 2z2.

5.4 Solve the diophantine equation x2 − y2 = 3.

5.5 Prove that each odd prime p can be written as a difference of squares of natural
numbers (p = y2 − x2 for x, y ∈ N) in a unique way.

5.6 Fermat repeatedly challenged English mathematicians by sending them problems
he claimed to have solved and asking for proofs. Two of them were the following
that he sent to Wallis:

• Prove that the only solution of x2 + 2 = y3 in positive integers is given by
x = 5 and y = 3;

• Prove that the only solution of x2 + 4 = y3 in positive integers is given by
x = 11 and y = 5.

In a letter to his English colleague Digby, Wallis called these problems trivial and
useless, and mentioned a couple of problems that he claimed were of a similar
nature:

• x2 + 12 = y4 has unique solution x = 2, y = 2 in integers;

• x4 + 9 = y2 has unique solution x = 2, y = 5 in integers;

• x3 − y3 = 20 has no solution in integers;

• x3 − y3 = 19 has unique solution x = 3, y = 2 in integers.
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When Fermat learned about Wallis’s comments, he called Wallis’s problems men-
tioned above “amusements for a three-day arithmetician” in a letter to Digby.
In fact, while Fermat’s problems were hard (and maybe even not solvable using
the mathematics known in his times), Wallis’s claims are easy to prove. Do this.

5.7 Assume that ab = rxn for a, b, r, x ∈ N and gcd(a, b) = 1. Show that there exist
u, v, y, z ∈ N such that a = uyn, b = vzn, and uv = r.
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Chapter 6

Residue Class Rings

In the last chapter we have defined congruences and congruence classes, and we
have shown that Z/mZ forms a ring. Given any ring R, we can define its unit
group R× = {u ∈ R : uv = 1 for some v ∈ R}: this is the set of all elements
dividing 1, or, equivalently, that have an inverse in R.

We have already seen that the unit group of Z is simply Z× = {−1,+1}, a
group of order 2. Let us now determine the unit groups of the rings of residue
classes Z/mZ. Observe that a residue class [u]m modulo m is a unit if there
exists an integer v such that [uv]m = [1]m, in other words: if uv ≡ 1 mod m for
some v ∈ Z.

Now we claim

Theorem 6.1. We have (Z/mZ)× = {a mod m : gcd(a,m) = 1}.

Proof. It is now that the Bezout representation begins to show its full power.
If gcd(a,m) = 1, then there exist integers x, y ∈ Z such that ax + my =
1. Reducing this equation modulo m gives ax ≡ 1 mod m, in other words:
the residue class a mod m is a unit! Not only that: the extended Euclidean
algorithm gives us a method to compute the inverse elements.

To prove the converse, assume that a mod m is a unit. Then ac ≡ 1 mod m
for some c ∈ Z, so ac = km + 1 for some k ∈ Z. But then ac − km = 1 shows
that gcd(a,m) = 1.

If m = p is a prime, the unit groups are particularly simple: we have
gcd(a, p) = 1 if and only if p - a, hence (Z/pZ)× = {1, 2, . . . , p−1} = Z/pZ\{0}.
But if every element 6= 0 of a ring has an inverse, then that ring is a field, and
we have proved

Corollary 6.2. If p is a prime, then the residue class ring Z/pZ is a field.

The field Z/pZ is called a finite field because it has finitely many elements.
As we have seen, there are finite fields with p elements for every prime p. Later
we will see that there exist finite fields with m > 1 elements if and only if m is
a prime power.
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The fact that Z/pZ is a field means that expressions like 1
7 mod 11 make

sense. To compute such ‘fractions’, you can choose one of the following two
methods:

1. Change the numerator mod 11 until the division becomes possible:

1
7
≡ 12

7
≡ 23

7
≡ 34

7
≡ 45

7
≡ 56

7
= 8 mod 11,

and in fact 7 · 8 = 56 ≡ 1 mod 11. This method only works well if p is
small.

2. Apply the Euclidean algorithm to the pair (7, 11), and compute a Bezout
representation; you will find that 1 = 2 · 11 − 3 · 7, and reducing mod 11
gives 1 ≡ (−3) · 7 mod 11, hence the multiplicative inverse of 7 mod 11 is
−3 ≡ 8 mod 11.

6.1 Euler-Fermat

Theorem 6.3 (Fermat’s Little Theorem). If p is a prime and a an integer
not divisible by p, then ap−1 ≡ 1 mod p.

The following proof is due to Leibniz1 and probably the oldest proof known
for Fermat’s Little Theorem. It uses binomial coefficients: these are the entries
in Pascal’s triangle, and they occur in the binomial theorem

(a+ b)n = an +
(
n

1

)
an−1b+

(
n

2

)
an−2b2 + . . .+

(
n

n− 1

)
abn−1 + bn.

We will need two properties of
(
n
k

)
: first we use the formula

(
n
k

)
= n!

k!(n−k)!
(which was how we defined them in Chapter 3), and then we claim

Lemma 6.4. If p is a prime, then the numbers
(
p
k

)
, k = 1, 2, . . . , p− 1, are all

divisible by p.

For example, the fifth row of Pascal’s triangle is 1 5 10 10 5 1. The claim is
not true if p is not a prime: the sixth row is 1 6 15 20 15 6 1, and the numbers
15 and 20 are not divisible by 6.

Proof. From
(
p
k

)
= p!

k!(p−k)! we see that the numerator is divisible by p while the
denominator is not divisible by p unless k = 0 or k = p. Thus we conclude that
p |

(
p
k

)
for 0 < k < p.

Now we can give an induction proof of Fermat’s Little Theorem:
1Gottfried Wilhelm von Leibniz, 1646 (Leipzig) – 1716 (Hannover).
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Proof. We prove the equivalent (!) statement ap ≡ a mod p for all a ∈ Z via
induction on a. The claim is clearly trivial for a = 1; assume it has been proved
for some a; then

(a+ 1)p = ap +
(
p

1

)
ap−1 + . . .+

(
p

p− 1

)
a+ 1.

Since the binomial coefficients are all ≡ 0 mod p by the lemma, we find

(a+ 1)p ≡ ap + 1 mod p,

and by the induction assumption, ap ≡ a mod p, so we get (a+1)p ≡ a+1 mod p,
and the induction step is established.

There is another proof of Fermat’s little theorem that works for any finite
group. To see what’s going on, consider (Z/5Z)× = {[1], [2], [3], [4]}, where [r]
denotes the residue class r mod 5. If we multiply each of these classes by 3, we
get

[1] · [3] = [3],
[2] · [3] = [1],
[3] · [3] = [4],
[4] · [3] = [4];

thus multiplying all prime residue classes mod 5 by 3 yields the same classes
again, though in a different order. If we multiply these four equations together,
we get [1][2][3][4] · [3]4 = [3][1][4][2] = [1][2][3][4], hence [3]4 = [1], or, in other
words, 34 ≡ 1 mod 5. This can be done in general:

Second Proof of Thm. 6.3. Write (Z/pZ)× = {[1], [2], . . . , [p − 1]}; let a be an
integer not divisible by p. If we multiply each residue class with [a], we get the
p− 1 classes [a], [2a], . . . , [(p− 1)a]:

[1] · [a] = [a]
[2] · [a] = [2a]

...
[p− 1] · [a] = [(p− 1)a]

If we can show that the classes on the right hand side are all different, then
they must be a permutation of the classes [1], . . . , [p− 1] that we started with.
Taking this for granted, the products [a] · [2a] · · · [(p − 1)a] = [(p − 1)!][ap−1]
and [1] · [2] · · · [p − 1] = [(p − 1)!] must be equal (after all, the factors are just
rearranged). But (p− 1)! is coprime to p, so we may cancel this factor, and get
[ap−1] = [1], i.e., ap−1 ≡ 1 mod p.

It remains to show that the classes [a], [2a], . . . , [(p− 1)a] are all different.
Assume therefore that [ra] = [sa] for integers 1 ≤ r, s ≤ p− 1; we have to show
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that r = s. But [ra] = [sa] means that [(r − s)a] = [0], i.e. that p | (r − s)a.
Since p - a by assumption, the fact that p is prime implies p | (r− s). But r− s
is an integer strictly between −p and p, and the only such integer is 0: thus
r = s as claimed.

Assume that we are given an integer m and an integer a coprime to m. The
smallest exponent n > 0 such that an ≡ 1 mod m is called the order of a mod m;
we write n = ordm(a). Note that we always have ordm(1) = 1. Here’s a table
for the orders of elements in (Z/7Z)×:

a mod 7 1 2 3 4 5 6

ord 7(a) 1 3 6 3 6 2

If m = p is prime, then Fermat’s Little Theorem gives us ap−1 ≡ 1 mod p,
i.e., the order of a mod p is at most p−1. In general, the order of a is not p−1;
it is, however, always a divisor of p− 1 (as the table above suggested):

Proposition 6.5. Given a prime p and an integer a coprime to p, let n denote
the order of a modulo p. If m is any integer such that am ≡ 1 mod p, then
n | m. In particular, n divides p− 1.

Proof. Write d = gcd(n,m) and d = nx + my; then ad = anx+my ≡ 1 mod p
since an ≡ am ≡ 1 mod p. The minimality of n implies that n ≤ d, but then
d | n shows that we must have d = n, hence n | m.

Here comes a pretty application to prime divisors of Mersenne and Fermat
numbers.

Corollary 6.6. If p is an odd prime and if q |Mp, then q ≡ 1 mod 2p.

Proof. It suffices to prove this for prime values of q (why?). So assume that
q | 2p − 1; then 2p ≡ 1 mod q. By Proposition 6.5, the order of 2 mod p divides
p, and since p is prime, we find that p = ord p(a).

On the other hand, we also have 2q−1 ≡ 1 mod p by Fermat’s little theorem,
so Proposition 6.5 gives p | (q− 1), and this proves the claim because we clearly
have q ≡ 1 mod 2.

Example: M11 = 2047 = 23 · 89.
Fermat numbers are integers Fn = 22n

+ 1 (thus F1 = 5, F2 = 17, F3 = 257,
F4 = 65537, . . . ), and Fermat conjectured (and once even seemed to claim he
had a proof) that these integers are all primes. These integers became much
more interesting when Gauss succeeded in proving that a regular p-gon, p an
odd prime, can be constructed with ruler and compass if p is a Fermat prime.
Gauss also stated that he had proved the converse, namely that if a regular
p-gon can be constructed by ruler and compass, then p is a Fermat prime, but
the first (almost) complete proof was given by Pièrre Wantzel.2

2Pièrre Wantzel, 1814 (Paris) – 1848 (Paris).
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Corollary 6.7. If q divides Fn, then q ≡ 1 mod 2n+1.

Proof. It is sufficient to prove this for prime divisors q. Assume that q | Fn; then
22n

+ 1 ≡ 1 mod q, hence 22n ≡ −1 mod q and 22n+1 ≡ 1 mod q. We claim that
actually 2n+1 = ord q(2): in fact, Proposition 6.5 says that the order divides
2n+1, hence is a power of 2. But 2n+1 is clearly the smallest power of 2 that
does it.

On the other hand, 2q−1 ≡ 1 mod q by Fermat’s Little Theorem, and Propo-
sition 6.5 gives 2n+1 | (q − 1), which proves the claim.

In particular, the possible prime divisors of F5 = 4294967297 are of the
form q = 64m + 1. After a few trial divisions one finds F5 = 641 · 6700417.
This is how Euler disproved Fermat’s conjecture. Today we know the prime
factorization of Fn for all n ≤ 11, we know that Fn is composite for 5 ≤ n ≤ 30
(and several larger values up to n = 382447), and we don’t know any factors for
n = 14, 20, 22 and 24. See
http://vamri.xray.ufl.edu/proths/fermat.html
for more.

Euler’s Theorem

Consider the unit group (Z/15Z)× of Z/15Z. It consists of the eight residue
classes [1], [2], [4], [7], [8], [11], [13], [14]. If we multiply each of these classes
e.g. by [7] (or [8], [9]), then we get

[1] · [7] = [7] [1] · [8] = [8] [1] · [9] = [9]
[2] · [7] = [14] [2] · [8] = [1] [2] · [9] = [3]
[4] · [7] = [13] [4] · [8] = [2] [4] · [9] = [6]
[7] · [7] = [4] [7] · [8] = [11] [7] · [9] = [3]
[8] · [7] = [11] [8] · [8] = [4] [8] · [9] = [12]

[11] · [7] = [2] [11] · [8] = [13] [11] · [9] = [9]
[13] · [7] = [1] [13] · [8] = [14] [13] · [9] = [12]
[14] · [7] = [8] [14] · [8] = [7] [14] · [9] = [6]

As in our proof of Fermat’s Little Theorem, the resulting residue classes (for
multiplication by [7] and [8]) are the classes we started with in a different order.
Multiplying these equations we get∏

(a,15)=1

[a] =
∏

(a,15)=1

[7a] = [7]8
∏

(a,15)=1

[a].

Since the a are coprime to 15, so is their product; thus we may cancel, and
we find [7]8 = [1], or 78 ≡ 1 mod 15. Similarly, we find 88 ≡ 1 mod 15; for
multiplication by 9, however, the classes on the right hand side differ from
those on the left (they’re all divisible by 3 since both 9 and 15 are), and we do
not get 98 ≡ 1 mod 15.

The same idea works in general. Let m ≥ 2 be an integer, and let φ(m)
denote the number of residue classes coprime to m, that is, ϕ(m) = #(Z/mZ)×.
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Then we have the following result, which is usually referred to as the Euler-
Fermat Theorem: it is due to Euler, but contains Fermat’s Little Theorem as a
special case.

Theorem 6.8. If a is an integer coprime to m ≥ 2, then aϕ(m) ≡ 1 mod m.

For m = p prime, we have φ(p) = p − 1, and Euler’s Theorem becomes
Fermat’s Little Theorem.

Proof. Let [ri], i = 1, . . . , t = φ(m), denote the residue classes in (Z/mZ)×.
Then we claim that [ar1], . . . , [art] are pairwise distinct. In fact, assume that
[ari] = [arj ] with i 6= j, that is, ari ≡ arj mod m. Since gcd(a,m) = 1, we may
cancel a, and get [ri] = [rj ]: contradiction.

Since the classes [ar1], . . . , [art] are all in (Z/mZ)× and different, and
since there are only t different classes in (Z/mZ)×, we must have (Z/mZ)× =
{[ar1], . . . , [art]}. But then

∏t
i=1[ri] =

∏t
i=1[ari] = [a]φ(m)

∏t
i=1[ri]. Since the

[ri] are coprime to m, so is their product. Cancelling then gives [a]φ(m) = [1],
which proves the claim.

6.2 Euler’s Phi Function

For the application of Euler-Fermat we need a formula that allows us to compute
φ(n). Let us first compute φ(n) directly for some small n. For n = 6, there are 6
different residue classes modulo 6; the classes [0], [2], [3] and [4] are not coprime
to 6 (or, in other words, do not have a multiplicative inverse), which leaves the
classes [1] and 5 as the only ones that are coprime to 6: thus φ(6) = 2. The
classes mod 8 coprime to 8 are [1], [3], [5], [7], hence φ(8) = 4. If p is prime,
then all the p−1 classes [1], [2], . . . , [p−1] are coprime to p, hence φ(p) = p−1.

n 3 4 5 6 7 8 9 10 12 15
φ(n) 2 2 4 2 6 4 6 4 4 8

We can easily compute φ(pk) (Euler’s phi function for prime powers): start-
ing with all the nonzero classes [1], [2], . . . , [p2 − 1] (there are p2 − 1 of them)
we have to eliminate those that are not coprime to p2, that is, exactly the
multiples of p smaller than p2: these are p, 2p, 3p, . . . , (p − 1)p (note that
p · p = p2 > p2 − 1); since there are exactly p − 1 of these multiples of p,
there will be exactly p2 − 1 − (p − 1) = p2 − p = p(p − 1) classes left: thus
φ(p2) = p(p− 1).

The same method works for pk: there are exactly pk − 1 nonzero classes,
namely [1], [2], . . . , [pk − 1]. The multiples of p among these classes are [p],
[2p], . . . , pk − p = (pk−1 − 1)p, and there are exactly pk−1 − 1 of them. Thus
φ(pk) = pk − 1− (pk−1 − 1) = pk − pk−1 = pk−1(p− 1).

We have proved

Proposition 6.9. For primes p and integers k ≥ 1, we have

φ(pk) = pk−1(p− 1).
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Let us now compute φ(pq) for a product of two different primes. We have
pq − 1 nonzero residue classes [1], [2], . . . , [pq − 1]. The classes that have a
factor in common with pq are multiples of p and multiples of q, namely [p], [2p],
. . . , [(q − 1)p and [q], [2q], . . . , [(p − 1)q]. Since there are no multiples of p
that are multiples of q (like [0], [pq], etc) among these, there will be exactly
pq − 1 − (p − 1) − (q − 1) = pq − p − q + 1 = (p − 1)(q − 1) classes left after
eliminating multiples of p or q. Thus φ(pq) = (p− 1)(q − 1) = φ(p)φ(q).

The general result is

Proposition 6.10. If m and n are coprime integers, then φ(mn) = φ(m)φ(n).

Before we turn to the proof, let’s see how it works in a specific example like
m = 5 and n = 3. What we’ll do is take a residue class modulo 15 and coprime
to 15, and map it to a pair of residue classes mod 3 and mod 5:

a mod 15 1 2 4 7 8 11 13 14
a mod 3 1 2 1 1 2 2 1 2
a mod 5 1 2 4 2 3 1 3 4

Thus we have the following pairs of residue classes modulo 3 and 5: (1, 1), (1, 2),
(1, 3), (1, 4) and (2, 1), (2, 2), (2, 3), (2, 4). In particular, there are φ(5) = 4 pairs
with a ≡ 1 mod 3 and 4 pairs with a ≡ 2 mod 3.

Proof of Prop. 6.10. We have to find a map sending a residue class modulo mn
to two residue classes modulo m and n. Let’s try

ψ : (Z/mnZ)× −→ (Z/mZ)× × (Z/nZ)× : [a]mn 7−→ ([a]m, [a]n).

All that’s left to do is check that it works. First observe that gcd(ab, n) = 1 if
and only if gcd(a, n) = gcd(b, n) = 1.

Surjectivity: We have to show that, given residue classes [r]m and [s]n, there
exists a residue class [a]mn such that [a]m = [r]m and [a]n = [s]n. At this point,
Bezout comes in again: since gcd(m,n) = 1, there exist x, y ∈ Z such that
1 = mx + ny. Now put a = ryn + sxm: then a = ryn + sxm ≡ ryn ≡
1 mod m since yn ≡ 1 mod m from the Bezout representation, and similarly
a = ryn+ sxm ≡ sxm ≡ s mod n.

Injectivity: Assume that there are residue classes [a]mn and [b]mn such that
[a]m = [b]m and [a]n = [b]n. Then m | (b − a) and n | (b − a), and since
gcd(m,n) = 1, this implies that [a]mn = [b]mn and proves the injectivity of
φ.

Proof 5 of the Infinitude of Primes. (Euler3 1849). Assume that there are only
finitely many primes, and let D denote their product. Then

φ(D) =
∏
p

(p− 1) ≥ 2 · 4 · · · > 2,

3Leonhard Euler, 1707 (Basel, Switzerland) – 1783 (St. Petersburg, Russia).
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hence there must be an integer a in the interval [2, D] coprime to D. This a
can’t have any prime divisor and so must be equal to 1, which contradicts a ≥ 2.

Again, if you take a = D−1 you basically get back Euclid’s proof with N−1
instead of the original N + 1.

6.3 Primitive Roots

The main theorem of this section is the existence of primitive roots modulo
primes p. Consider the residue classes [2] and [3] modulo 7. Then the classes
represented by powers of [2] are [2], [4] = [2]2, and [1] = [2]3; these are half of
the nonzero classes modulo 7. The powers of [3], on the other hand, are [3],
[2] = [3]2, [6] = [3]3, [4] = [3]4, [5] = [5]5, and [1] = [3]6, so the powers of [3]
generate all the nonzero classes modulo 7. For this reason, we call 3 a primitive
root modulo 7, whereas 2 is not a primitive root modulo 7.

Instead of proving that for every prime p there is a primitive root g, we shall
prove a more general result:

Theorem 6.11. The multiplicative group of a finite field is cyclic.

For the proof we a bit of information on the order of elements a in finite
abelian groups G: this is the smallest positive integer r such that ar = 1.

Lemma 6.12. If an element g of order n in some finite abelian group G. If
gm = 1, then n | m.

Proof. Write m = qn + r with 0 ≤ r < n (Euclidean division); then 1 = gm =
gqn+r = qqngr = gr. Since n is the minimal positive exponent with this property
and r < n, we must have r = 0. This proves the claim.

Lemma 6.13. If G is an abelian group, and if a, b ∈ G are elements of order
m and n respectively such that gcd(m,n) = 1, then ab has order mn.

Proof. Clearly (ab)mn = amnbmn = (am)n(bm)n = 1, so ab has order dividing
mn (note that we have used commutativity here).

For the converse, let k denote the order of mn, that is the minimal integer
k with 1 ≤ k ≤ mn such that (ab)k = 1; we have to show that k = mn.

From (ab)k = 1 we get 1 = (ab)km = akmbkm = bkm; hence n | km by
Lemma 6.12; since gcd(n,m) = 1, we have n | k.

Exactly the same reasoning with the roles of a and b interchanged shows
that m | k. But gcd(m,n) = 1, hence n | k and m | k imply that mn | k. Since
k 6= 0, we conclude that k ≥ mn, and this proves the claim.

Finally, let us prove Lagrange’s Theorem:

Proposition 6.14. Let G be a finite abelian group with n elements. Then
gn = 1 for all g ∈ G.
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Proof. Let g1 = 1, g2, . . . , gn be the elements of G. We multiply each of these
elements by g and get gig = gπ(i) for some index π(i) ∈ {1, . . . , n}. We claim
that π permutes the indices, i.e., that the gπ(i) are just the elements gi in some
(possibly) different order.

For this end, it suffices to show that the gπ(i) are pairwise different: because
then there are n such elements, and since G has only n elements, the claim
follows. But assume that gig = gjg; multiplying through by the inverse of g
gives gi = gj , hence i = j.

Multiplying the equations gig = gπ(i) together, we get gn
∏
gi =

∏
gπ(i).

Now π permutes the indices, hence
∏
gi =

∏
gπ(i); canceling gives gn = 1.

In the special case where G is the additive group G = Z/nZ, the result
is trivial, since it says that n[a] = [0] for any residue class [a] ∈ Z/nZ. If
G = (Z/pZ)×, however, then #G = p − 1, and Lagrange’s theorem says that
[a]p−1 = [1] for a ∈ (Z/pZ)×: this is Fermat’s Little Theorem. Finally, if
G = (Z/mZ)×, then #G = φ(m), and Lagrange’s theorem gives the theorem of
Euler-Fermat.

Proof of Theorem 6.11. If n = 1, the claim is trivial. If n > 1, let p be a prime
divisor of the order n of F×. Then there is an element a ∈ F such that an/p 6= 1.
For if not, then every a ∈ F is a root of the polynomial f(X) = Xn/p − 1; in
particular, f has degree n/p and n roots. But polynomials f over fields can
have at most deg f roots: contradiction.

Now let pr be the exact power of a prime p that divides n = #F×; then
we claim that the element x = an/p

r

has order pr. In fact, xp
r

= an = 1
by Lagrange’s Theorem (in the case that we are most interested in, namely
F = Z/pZ, this is just Fermat’s Little Theorem), so the order of x divides pr

by Lemma 6.12. If the order were smaller, then we would have xp
r−1

= 1; but
xp

r−1
= an/p 6= 1 by choice of a.

Now write n = pr11 · · · p
rt
t . By the above, we can construct an element xi of

order pri
i for every 1 ≤ i ≤ t. But then x1 · · ·xt has order n by Lemma 6.13

(use induction).

The fact that (Z/pZ)× is cyclic can be used to give another proof of the
fact that the congruence x2 ≡ −1 mod p is solvable if p ≡ 1 mod 4: since
(Z/pZ)× is cyclic, there is an element g ∈ Z such that [x] has order p − 1.
Thus gp−1 ≡ 1 mod p, hence p | (gp−1 − 1) = (g(p−1)/2 − 1)(g(p−1)/2 + 1). If p
divided the first factor, then [g] would have order dividing p−1

2 ; thus p divides
the second factor, and we find g(p−1)/2 ≡ −1 mod p. Put x = g(p−1)/4; then
x2 ≡ −1 mod p.

Definition. We say that an integer g is a primitive root modulo m if the powers
of g generate all residue classes coprime to m. For example, 3 is a primitive
root modulo 7, but 2 is not.

Corollary 6.15. For every prime p there exist primitive roots.
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Proof. Since Z/pZ is a finite field, the group (Z/pZ)× is cyclic, that is, there
exists an integer g of order p − 1; the powers of g generate the whole group
(Z/pZ)×.

Exercises

6.1 Compute the addition and multiplication tables for the ring Z/2Z ⊕ Z/2Z, and
compare the result to those for Z/4Z.

6.2 Do the same exercise for the rings Z/2Z⊕ Z/3Z and Z/6Z.
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Chapter 7

Applications

In this chapter we will indicate how the theory of congruences and finite fields
can be applied to problems in factorization of integers, cryptography and coding
theory.

7.1 RSA

Cryptography deals with methods that allow us to transmit information safely,
that is, in such a way that eavesdroppers have no chance of reading it. Simple
methods for encrypting messages were known and widely used in military circles
for several millenia; basically all of these codes are easy to break with computers.

An example of such a classical code is Caesar’s cipher: permute the letters
of the alphabet by sending X 7−→ A, Y 7−→ B, Z 7−→ C, A 7−→ D etc; the text
“ET TU, BRUTE” would be encrypted as “BQ QR, YORQB”. For longer texts,
analyzing the frequency of letters (for given languages) makes breaking this and
similar codes a breeze, in particular if you are equipped with a computer.

Another common feature of these ancient methods of encrypting messages
is the following: anyone who knows the key, that is, the method with which
messages are encrypted, can easily break the code by inverting the encryption.
In 1976, Diffie and Hellman suggested the existence of public key cryptography:
these are methods for encrypting messages that do not allow you to read en-
crypted messages even if you know the key. The most famous of all public key
cryptosystems is called RSA after its discoverers Ramir, Shamir and Adleman
(1978).

Here’s the simple idea: assume that Bob wants to receive secure messages;
he selects two (large) primes p and q and forms their product n = pq. Bob also
chooses an integer E < n coprime to (p − 1)(q − 1). The integers n and E are
made public and constitute the key, so everybody can encrypt messages. For
decrypting messages, however, one needs to know the prime factors p and q, and
if p and q are large enough (say about 150 digits each) then known factorization
methods cannot factor n in any reasonable amount of time (say 100 years).
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How does the encryption work? It is a simple matter to transform any text
into a sequence of numbers, for example by using a 7−→ 01, b→ 02, . . . , with a
couple of extra numbers for blanks, commas, etc. We may therefore assume that
our message is a sequence of integers T < n (if the text is longer, break it up
into smaller pieces). Alice encrypts each integer T as C ≡ TE mod n and sends
the sequence of C’s to Bob (by email, say). Now Bob can decrypt the message
as follows: since he knows p and q, he can form the product m = (p− 1)(q− 1)
and run the Euclidean algorithm on the pair (E,m) to find an integer D such
that DE ≡ 1 mod m. Now he takes the message C and computes CD mod n.
The result is CD ≡ (TE)D = TDE mod n, but since DE ≡ 1 mod m = φ(n),
the theorem of Euler-Fermat shows that CD ≡ T mod n, and Bob has got the
original text that Alice sent him.

Now assume that Celia is eavesdropping. Of course she knows the pair (n,E)
(which is public anyway), and she also knows the message C that Alice sent to
Bob. That does not suffice for decrypting the message, however, since one seems
to need an inverse D of E mod (p − 1)(q − 1) to do that; it is likely that one
needs to know the factors of n in order to compute D.

Baby Example. The following choice of n = 1073 with p = 29 and q = 37 is
not realistic because this number can be factored easily; its only purpose is to
illustrate the method.

So assume that Bob picks the key (n,E) = (1073, 25). Alice wants to send
the message ”miss piggy” to Bob. She starts by transforming the message into
a string of integers as follows:

m i s s p i g g y
T 13 9 19 19 27 16 9 7 7 25

Next she encrypts this sequence by computing C ≡ T 25 mod n for each of
these T : starting with 1325 ≡ 671 mod 1073, she finds

T 13 9 19 19 27 16 9 7 7 25
C 671 312 901 901 656 1011 312 922 922 546

Alice sends this string of C’s to Bob. Knowing the prime factorization of
n, Bob is able to compute the inverse of 25 mod (p − 1)(q − 1) as follows: he
multiplies p − 1 = 28 and q − 1 = 36 to get (p − 1)(q − 1) = 28 · 36 = 1008.
Then he applies the extended Euclidean algorithm to (25, 1008) and finds 1 =
25 · 121− 1008 · 3, and this shows that D = 121.

Now Bob takes the string of C’s he got from Alice and decrypts them: start-
ing with 671121 ≡ 13 mod n he can get back the string of T’s, and hence the
original message.
Remark. There is a big problem with this baby example: if we encrypt the
message letter for letter, then equal letters will have equal code, and the cryp-
tosystem can be broken (if the message is long enough) by analyzing the fre-
quency with which each letter occurs (say in English). This problem vanishes
into thin air when we use (realistic) key sizes of about 200 digits: there we en-
crypt the message in blocks of about 100 letters, and since the chance that any
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two blocks of 100 letters inside a message coincide is practically 0, an attack
based on the frequency of letters will not be successful for keys of this size.

RSA can also be applied to the signature problem. Assume that Alice re-
ceives an email from someone claiming to be Bob. How can Alice verify that this
is true? Here’s the simple trick in a nutshell: both Bob and Alice choose public
keys, say (nA, EA) for Alice and (nB , EB) for Bob. Moreover, Alice knows DA

with DAEA ≡ 1 mod φ(nA), while Bob knows DB with DBEB ≡ 1 mod φ(nB).
Now Bob encrypts his message as above, but instead of sending the T’s to Al-
ice, he computes U = TDB mod nB and sends the U’s. In order to decrypt the
message, Alice computes first T ≡ UED mod nB and then decrypts the T’s as
in the original version of RSA using her DA. If this works, then Alice can be
sure that the message came from Bob because in order to encrypt the message
this way, the sender has to know DB .

7.2 Flannery’s Cayley-Purser Algorithm

There are many public key cryptosystems; the general idea is to replace the
group (Z/nZ)× used in RSA by other finite groups. The following algorithm
was proposed by Sarah Flannery in connection with a school project she took
part in and earned her the title Irish Young Scientist of the Year 1999 (check
out her book).

In this system, (Z/nZ)× is replaced by its 2-dimensional analogue, the group
GL(2,Z/nZ). In general, GL(k,Z/nZ) is the group of all k×k-matrices A with
entries in Z/nZ whose determinant d = detA satisfies gcd(d, n) = 1. If this
condition holds, then the well known formulas for inverting A still make sense,
hence such matrices have inverses: there exist B ∈ GL(k,Z/nZ) such that
AB = 1, where 1 is the matric having 1 on the diagonal and 0 everywhere else.

For k = 1, the matrices are 1 × 1-matrices, i.e., numbers A = (a), and the
condition gcd(detA,n) = 1 boils down to gcd(a, n) = 1.

One of the key observations for RSA was the theorem of Euler-Fermat, and
in this connection the fact that φ(n) = φ(pq) = φ(p)φ(q) = (p−1)(q−1) played
a central role. Note that φ(n) is the order of the group GL(1,Z/nZ) = (Z/nZ)×.

What is the order of the group GL(2,Z/nZ) for n = pq?

Lemma 7.1. Let n = pq be the product of two distinct primes. Then GL(2,Z/nZ)
has exactly nφ(n)2(p+ 1)(q + 1) elements.

Proof. Consider the map π : GL(2,Z/nZ) −→ GL(2,Z/pZ) × GL(2,Z/qZ) de-
fined by (

[a]n [b]n
[c]n [d]n

)
7−→

((
[a]p [b]p
[c]p [d]p

)
,

(
[a]q [b]q
[c]q [d]q

))
.

Using the Chinese remainder theorem it is not too hard to show that π is
bijective (even an isomorphism). This means that

#GL(2,Z/nZ) = #GL(2,Z/pZ)×#GL(2,Z/qZ).
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Thus it remains to count the number of elements in GL(2,Z/pZ).
We have p2 − 1 choices for the first column (every vector except the zero

vector will do). The second column has to be independent from the first; there
are p multiples of the first column vector, which means that we have p2 − p
choices for the second vector. Thus there are (p2− 1)(p2− p) = p(p− 1)2(p+1)
matrices with entries in Z/pZ and nonzero determinant.

Just as in RSA, if Alice wants to receive messages, she has to come up with
a public key. She picks two (large) primes p, q and computes n = pq. Then
she picks (randomly) matrices α, χ ∈ GL(2,Z/nZ) such that χα−1 6= αχ, and
computes β = χ−1αχ and γ = χr for some fixed integer r ∈ N.

The public key consists of n, α, β, γ.
Now Bob can send messages µ to Alice:

• he picks a random integer s,

• computes δ = χs,

• ε = δ−1αδ,

• κ = δ−1βδ.

Now µ is enciphered by µ′ = κµκ, and Bob sends µ′ and ε to Alice.
When Alice receives (µ′, ε), she computes λ = χ−1εχ and then µ = λµ′λ is

the plain text.
Why? Well, because

λ = χ−1εχ = χ−1(δ−1αδ)χ
= δ−1(χ−1αχ)δ χ commutes with δ = χrs

= δ−1(χ−1α−1χ)−1δ = δ−1β−1δ since β = χ−1α−1χ
= (δ−1βδ)−1 = κ−1

hence
λµ′λ = λ(κµκ)λ = (κ−1κ)µ(κκ−1) = µ.

What this means is that the procedure works: Bob can send messages to
Alice, and Alice can decode them. Moreover, this procedure is much faster
than RSA (by a factor of 20 for realistic values of n), and speed is extremely
important in cryptography.

Unfortunately, however, this cryptosystem is not secure.

7.3 Primality Tests

Fermat’s Little Theorem says that if p is a prime and a an integer not divisible
by p, then ap−1 ≡ 1 mod p. This can be turned into a primality test:
1. Pick some random integer 0 < a < n;
2. Check whether d := gcd(a, n) = 1;

if not, print ‘‘d is a factor of n’’ and terminate;
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3. Check whether ap−1 ≡ 1 mod p;
if not, print ‘‘n is composite’’.

Any integer n surviving this test is called a pseudoprime to basis a; as the
example a = 2, n = 341 shows, there exist composite pseudoprimes.

The primality test given above can be turned into an algorithm that proves
n to be a prime if it is one; here’s the idea: we know that if n is prime, then
(Z/nZ)× is cyclic, generated by a primitive root g. We know that p − 1 is
the smallest positive exponent k of g such that gk ≡ 1 mod p. In particular,
g(p−1)/q 6≡ 1 mod p for every prime divisor q of p− 1. Now we claim

Theorem 7.2. If n and a are integers such that

1. an−1 ≡ 1 mod n and

2. a(n−1)/q 6≡ 1 mod n for every prime divisor q of p− 1,

then n is a prime, and a is a primitive root modulo n.

Proof. Let r be the order of a mod n. Then r divides n− 1 by Proposition 6.5.
We claim that r = n − 1. If not, then n − 1 = rs with s > 1, hence there is a
prime factor q | s, i.e., s = qt and n − 1 = rqt. Then a(n−1)/q = art = (ar)t ≡
1t = 1 mod n contradicting 2, so we conclude that r = n− 1.

Since an−1 ≡ 1 mod n, we must have gcd(a, n) = 1 (if we had q | a and q | n,
then q | a =⇒ q | an−1 and q | n =⇒ q | an−1 − 1 (from 1.), and this implies
q | 1: contradiction). Thus the powers of a mod n generate n − 1 different
residue classes modulo n, all of them coprime to n. Thus every nonzero residue
class mod n has an inverse, hence n is prime (and a is a primitive root mod
p): this is because if n = de is a nontrivial factorization, then the residue class
d mod n is nonzero but does not have an inverse.

Here’s a baby-example: take n = 127; then n − 1 = 126 = 2 · 32 · 7. Let us
start with a = 2 (why not?). We first check that 2126 ≡ 1 mod 127. Next we
have to make sure that 2126/q 6≡ 1 mod 127 for q = 2, 3 and 7. But already for
q = 2 we find 263 ≡ 1 mod 127, and our algorithm fails.

Let’s see if we are more successful with a = 3; again we find 3126 ≡ 1 mod
127; now

363 ≡ −1 mod 127,
342 ≡ −20 mod 127,
318 ≡ 18 mod 127,

so 127 is indeed prime.

Thus it seems that with a few additional computations we can turn Fermat’s
little theorem into an algorithm that allows us to prove that a given integer is
prime (or not). The problem, however, is this: in step 2, we need the complete
factorization of n−1. Sometimes this is not a big problem, especially for numbers
of the form n = 2km + 1 with small m, but for general integers this is indeed
the bottleneck.
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There are, however, improvements to this simple test: first, it can be shown
that it suffices to know the factorization of a large part of n − 1: the part of
n− 1 that we can factor has to be >

√
n.

The primality test given above works well if the prime factorization of N −1
is known. This is the case e.g. for Fermat numbers N = Fn = 22n

+ 1, where
N − 1 is a power of 2. We find:

Proposition 7.3. A Fermat number Fn is prime if and only if 3(Fn−1)/2 ≡
−1 mod Fn.

Proof. The proof of the “only if” part will be deferred until we know about
quadratic residues. Assume therefore that 3(Fn−1)/2 ≡ −1 mod Fn; then Theo-
rem 7.2 is satisfied with a = 3.

7.4 Pollard’s p− 1-Factorization Method

Pollard is definitely the world champion in inventing new methods for factoring
integers. One of his earliest contributions were the p − 1-method (ca. 1974),
his ρ-method followed shortly after, and his latest invention is the number field
sieve (which is based on ideas from algebraic number theory).

The idea behind Pollard’s p − 1-method is incredibly simple. Assume that
we are given an integer N that we want to factor. Fix an integer a > 1 and
check that gcd(a,N) = 1 (should d = gcd(a,N) be not trivial, then we have
already found a factor d and continue with N replaced by N/d).

Let p be a factor of N ; by Fermat’s Little Theorem we know that ap−1 ≡
1 mod p, hence D := gcd(ap−1 − 1, N) has the properties p | D and D | N .
Thus D is a nontrivial factor of N unless D = N (which should not happen too
often).

The procedure above is not much of a factorization algorithm as long as we
have to know the prime factor p beforehand. The prime p occurs at two places in
the method above: first, as the modulus when computing ap−1 mod p. But this
problem is easily taken care of because we may simply compute ap−1 mod N . It
is more difficult to get rid of the p in the exponent: the fundamental observation
is that we can replace the exponent p − 1 above by any multiple, and D still
will be divisible by p (note though that the chance that D = N has become
slightly larger). Does this help us? Not always; assume, however, that p− 1 is
the product of small primes (say of primes below a bound B that in practice
can be taken to be B = 105 or B = 106, depending on the computing power of
your hardware). Then it is not too hard to come up with good candidates for
multiples of p− 1: we might simply pick k = B!, or, in a similar vein,

k =
∏
i

pai
i , where pai

i ≤ B < pai+1
i . (7.1)

If we (p− 1) | k, then ak ≡ 1 mod p, hence p | D = gcd(ak − 1, N).
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Thus the following algorithm has a good chance of finding those factors p of
N for which p− 1 has only small prime factors:

1. Pick a > 1 and check that gcd(a,N) = 1
2. Choose a bound B, say B = 104, 105, 106, ...
3. Pick k as in (7.1) and compute D = gcd(ak − 1, N).

Note that the computation of ak can be done modulo N ; if p | N and
(p− 1) | k, then ak ≡ 1 mod p, hence p | D.

If D = 1, we may increase k; if D = N , we can reduce k and repeat the
computation.

Among the record factors found by the p − 1-method is the 37-digit factor
p = 6902861817667290192729108442204980121 of 7177 − 1 with p− 1 = 23 · 33 ·
5 ·7 ·11 ·13 ·401 ·409 ·3167 ·83243 ·83983 ·800221 ·2197387 discovered by Dubner.
A list of record factors can be found at
http://www.users.globalnet.co.uk/∼aads/Pminus1.html

Here’s a baby example: take N = 1769, a = 2 and B = 6. Then we compute
k = 22·3·5 and we find 260 ≡ 306 mod 1769, gcd(305, 1769) = 61 andN = 29·61.
Note that 61 − 1 = 22 · 3 · 5, so the factor 61 was found, while 29 − 1 = 22 · 7
explains why 29 wasn’t (although 29 < 61).

Another large class of factorization algorithms is based on an algorithm
invented by Fermat: the idea is to write an integer n as a difference of squares.
If n = x2−y2, then n = (x−y)(x+y), and unless this is the trivial factorization
n = 1 · n, we have found a factor.

Another baby example: take n = 1073; then
√
n = 32.756 . . ., so we start by

trying to write n = 332 − y2. Since 332 − 1073 = 16, we find n = 332 − 42 =
(33− 4)(33 + 4) = 29 · 37. If the first attempt would have been unsuccessful, we
would have tried n = 342 − y2, etc.

In modern algorithms (continued fractions, quadratic sieve, number field
sieve) the equation N = x2 − y2 is replaced by a congruence x2 ≡ y2 mod N : if
we have such a thing, then gcd(x−y,N) has a good chance of being a nontrivial
factor of N . The first algorithm above constructed such pairs (x, y) by comput-
ing the continued fraction expansion of

√
n (which we have not discussed), the

number field sieve produces such pairs by factoring certain elements in algebraic
number fields.

Exercises

7.1 ISBN
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Chapter 8

Quadratic Residues

Quadratic Reciprocity belongs to the highlights of every introduction to number
theory. Conjectured by Euler and partially proved by Legendre in the late 18th
century, the first complete proof was published 1801 in Gauss’s Disquisitiones
Arithmeticae (actually he gave two proofs there, followed later by six others).

8.1 Quadratic Residues

Let F be a field; it is an apparently simple question to ask for a characterization
of the squares in F , that is, the set of elements a ∈ F such that a = b2 for some
b ∈ F . This question is trivial for F = C because every complex number is a
square. The answer is also easy for F = R: a real number x is a square if and
only if x ≥ 0.

Knowledge about squares is important for solving quadratic equations: x2 +
ax+b = 0 has solutions in the reals if and only if the discriminant a2−4b of the
polynomial is a square. The same thing is true for finite fields Z/pZ for odd p
(the case p = 2 is different because the formula for solving quadratic equations
has a 2 in the denominator, and 2 = 0 in Z/2Z): consider e.g. x2+2x−1 = 0 over
Z/pZ. The well known fomula gives the two solutions 1

2 (−2±
√

8 ) = −1±
√

2,
so there are exactly two solutions if 2 is a square in Q(

√
p ), and none otherwise.

Example. For p = 7, 2 ≡ 32 mod 7, so the formula gives the two solutions
−1±3 ≡ 2,−4 mod 7, and in fact 22 +2 ·2−1 ≡ (−4)2 +2 · (−4)−1 ≡ 0 mod 7.

Quadratic reciprocity helps us deciding whether certain elements are squares
in Fp = Z/pZ or not. We will call the squares in Fp (or, more exactly, the
integers whose residue classes in Fp are squares) quadratic residues modulo p,
the nonsquares quadratic nonresidues. Let us make some experiments; since 0
is always a square, we restrict ourselves to F×p .
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prime squares nonsquares
3 1 2
5 1, 4 2, 3
7 1, 2, 4 3, 5, 6

11 1, 3, 4, 5, 9 2, 6, 7, 8, 10
13 1, 3, 4, 9, 10, 12 2, 5, 6, 7, 8, 11

There are hardly any regularities to discover. One may notice that the sums
of the squares in Fp are divisible by p for p > 3 (can you prove that?), but we
want to get a grip on the elements, not on sums (what about products?) of
them.

Clearly 1 is always a square; we have also seen that −1 is a square if and
only if p ≡ 1 mod 4. We will now give a slightly different proof using

Proposition 8.1 (Euler’s Criterion). If a ∈ Z is not divisible by p, then a
is a quadratic residue or nonresidue modulo p according as a(p−1)/2 ≡ +1 or
a(p−1)/2 ≡ −1 mod p.

Proof. This is easy: assume that a ≡ x2 mod p; then a(p−1)/2 ≡ xp−1 ≡ 1 mod p
by Fermat’s Little Theorem.

Conversely, assume that a(p−1)/2 ≡ +1 mod p and let g be a primitive root
modulo p. Then a ≡ gr mod p for some 0 ≤ r < p − 1; if r were odd, then
a(p−1)/2 ≡ (g(p−1)/2)r ≡ (−1)r = −1 mod p, hence r must be even, say r = 2s.
But then a ≡ (gs)2 mod p is a quadratic residue.

At this point it is appropriate to introduce the Legendre symbol. Given a
prime p and an integer a ∈ Z with p - a, we put

(a
p

)
=

{
+1, if a(p−1)/2 ≡ +1 mod p,
−1, if a(p−1)/2 ≡ −1 mod p.

By Euler’s criterion, we have (ap ) = +1 if a is a quadratic residue modulo p,
and (ap ) = −1 if a is a quadratic nonresidue. Observe that we have a(p−1)/2 ≡
(ap ) mod p whenever a is not divisible by p. If we put (ap ) = 0 whenever p | a,
the congruence a(p−1)/2 ≡ (ap ) mod p holds for all integers a.

Corollary 8.2. The integer −1 is a quadratic residue modulo an odd prime p
if and only if p ≡ 1 mod 4. In other words: (−1

p ) = (−1)(p−1)/2.

Proof. By Euler’s criterion, −1 is a quadratic residue modulo p if and only if
(−1)(p−1)/2 = +1 (modulo p, but since p is odd, this implies equality). This
in turn holds if and only if the exponent p−1

2 is even, that is, if and only if
p ≡ 1 mod 4.

That’s not much, but better than nothing. As a matter of fact, this simple
result allows us to prove that there are infinitely many primes of the form 4n−1.
We first formulate a little
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Lemma 8.3. If p > 0 is an odd prime divisor of an integer of the form n2 + 1,
then p ≡ 1 mod 4.

Proof. From p | n2 + 1 we deduce that n2 ≡ −1 mod p. Thus −1 is a quadratic
residue modulo p, hence p ≡ 1 mod 4.

Corollary 8.4. There are infinitely many primes of the form 4n+ 1.

Proof. Assume there are only finitely many primes of the form 4n + 1, say
p1 = 5, p2, . . . , pn. Then N = 4p2

1 · · · p2
n + 1 is of the form 4n + 1 and greater

than all the primes pk of this form, hence N must be composite. Now N
is odd, hence so is any prime divisor p of N , and since any such p is of the
form 4n + 1 by Corollary 8.2, we conclude that p = pk for some index k. But
then pk | N and pk | N − 1 = 4p2

1 · · · p2
n, and we get the contradiction that

pk | (N − (N − 1)) = 1.

Now let us study the behaviour of the prime 2:

p 3 5 7 11 13 17 19 23 29 31
(2/p) −1 −1 +1 −1 −1 +1 −1 +1 −1 +1√

2 − − ±3 − − ±6 − ±5 − ±8

Thus 2 is a quadratic residue modulo 7, 17, 23, and 31; among the primes
in this table, these are exactly the primes of the form p ≡ ±1 mod 8. Thus we
conjecture:

Proposition 8.5. The prime 2 is a quadratic residue modulo an odd prime p
if and only if p ≡ ±1 mod 8. In other words: we have ( 2

p ) = (−1)(p
2−1)/8.

The fact that the second claim is equivalent to the first is easy to check:
Basically, the proof boils down to the following table:

a mod 8 1 3 5 7
1
8 (a2 − 1) mod 2 0 1 1 0

Great. Now how would one prove such a conjecture? Euler’s criterion does not
really seem to help, because we have no idea how to evaluate 2

p−1
2 mod p.

There is a simple proof that 2 is a quadratic residue modulo primes p =
8k + 1: let g be a primitive root modulo p and put s = gk + g−k. Then
s2 ≡ g2k + g−2k + 2 mod p; but g2k + g−2k = g−2k(g4k + 1) ≡ 0 mod 4 since
g4k ≡ −1 mod p. Thus s2 ≡ 2 mod p.

There’s actually a classical idea behind this trick: look at the eighth roots
of unity in the complex numbers, say ζ = e2πi/8. Then

√
2 = ζ + ζ−1: in fact,

(ζ+ζ−1)2 = i+i−1+2 = 2 since 1/i = −i, and moreover ζ+ζ−1 > 1 on the real
line (sketch!). Our proof above was merely a translation of this computation
from C to Z/pZ.

It is possible to do something similar (even for the general reciprocity law)
by constructing

√
p out of roots of unity; this requires some algebra, however,

and we will choose a different proof with an elementary flavor.
For computing (−3/p), the algebra involved is simple enough. We claim
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Proposition 8.6. For primes p > 3, we have

(−3
p

)
=

{
+1 if p ≡ 1 mod 3,
−1 if p ≡ 2 mod 3.

.

Proof. Before we go into details, here’s the idea: if p = 3n + 1, let g be a
primitive root mod p, put ρ = gn, and show that (ρ2 − ρ)2 ≡ −3 mod p.

Conversely, if x2 ≡ −3 mod p, put ρ ≡ (−1 + x)/2 mod 3 and show that ρ
has order 3; since the order of ρ divides p− 1 by Proposition 6.5, we must have
p ≡ 1 mod 3.

Now let’s do it properly. Assume first that p = 3n+1. We want to construct
a square root of −3 mod p. To this end, pick a primitive root g mod p and put
ρ = gn mod p. Then ρ3 ≡ 1 mod p by Fermat’s Little Theorem, and ρ 6=
1 mod p since g is a primitive root. Thus 0 ≡ ρ3−1 = (ρ−1)(ρ2 +ρ+1) mod p,
and since p - (ρ−1), we conclude that ρ2+ρ+1 ≡ 0 mod p. But then (ρ2−ρ)2 =
ρ4 − 2ρ3 + ρ2 ≡ ρ − 2 + ρ2 ≡ 1 + ρ + ρ2 − 3 ≡ −3 mod p, and we have shown
that −3 is a square modulo p.

Now assume conversely that x2 ≡ −3 mod p. We put ρ ≡ 1
2 (−1 + x) mod p,

where 1
2 mod p denotes the inverse of 2 mod p, and find that ρ2 ≡ 1

4 (1 − 2x +
x2) ≡ 1

2 (−1 − x) mod p since x2 ≡ −3 mod p. But then ρ3 ≡ 1
4 (1 − x2) ≡

1 mod p, so the order of ρ mod p divides 3. We claim that the order is 3; if
not, the order would have to be 1, and this implies ρ ≡ 1 mod p; but p |
(ρ − 1) = 1

2 (−3 + x) implies x ≡ 3 mod p, hence x2 ≡ 9 mod p contradicting
x2 ≡ −3 mod p whenever p 6= 3.

8.2 Gauss’s Lemma

The main ingredient of the elementary proofs of the quadratic reciprocity law is
a lemma that Gauss invented for his third proof. Recall how we proved Fermat’s
Little Theorem: we took a complete set of prime residue classes {1, 2, . . . , p −
1}, multiplied everything by a, and pulled out the factor ap−1. For quadratic
reciprocity, Euler’s criterion suggests that we would like to pull out a factor
a(p−1)/2. That’s what made Gauss introduce a halfsystem modulo p: this is any
set A = {a1, . . . , am} of representatives for residue classes modulo p = 2m + 1
with the following properties:
a) the aj are distinct modulo p, that is: if ai ≡ aj mod p, then i = j;
b) every integer is either congruent modulo p to ai or to −ai for some 1 ≤ i ≤
p−1
2 .

In other words: a halfsystem A is any set of integers such A ∪ −A is a
complete set of prime residue classes modulo p. A typical halfsystem modulo p
is the set A = {1, 2, . . . , p−1

2 }.
Now consider the prime p = 13, choose A = {1, 2, 3, 4, 5, 6}, and look at

a = 2. Proceeding as in the proof of Fermat’s Little Theorem, we multiply
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everything in sight by 2 and find

2 · 1 ≡ +2 mod 13,
2 · 2 ≡ +4 mod 13,
2 · 3 ≡ +6 mod 13,
2 · 4 ≡ −5 mod 13,
2 · 5 ≡ −3 mod 13,
2 · 6 ≡ −1 mod 13.

Thus three products still lie in A, while three others lie in −A. Thus there is
an odd number of sign changes, and 2 is a quadratic nonresidue.

What about a = 3? Here we find

3 · 1 ≡ +3 mod 13,
3 · 2 ≡ +6 mod 13,
3 · 3 ≡ −4 mod 13,
3 · 4 ≡ −1 mod 13,
3 · 5 ≡ +2 mod 13,
3 · 6 ≡ +5 mod 13.

Here the number of sign changes is even (there are two), and 3 is a quadratic
residue modulo 13.

Gauss realized that this is not an accident:

Lemma 8.7 (Gauss’s Lemma). Let p = 2n + 1 be an odd prime, put A =
{a1, . . . , an}, and let a be an integer not divisible by p. Write

aia ≡ (−1)s(i)at(i) mod p (8.1)

for every ai ∈ A, where s(i) ∈ {0, 1} and t(i) ∈ {1, 2, . . . , n}. Then

an ≡
n∏
i=1

(−1)s(i) mod p.

Thus a is a quadratic residue or nonresidue modulo p according as the num-
ber of sign changes is even or odd. The proof is quite simple:

Proof. Observe that the at(i) in (8.1) run through A if the ai do, that is: the at(i)
are just the ai in a different order. In fact, if we had aia ≡ (−1)s(i)at(i) mod
p and aka ≡ (−1)s(k)at(k) mod p with at(i) = at(k), then dividing the first
congruence by the second gives at(i)/at(k) ≡ (−1)s(i)−s(k) mod p, that is, we
have at(i) ≡ ±at(k) mod p for some choice of sign. But this is impossible since
1 ≤ at(i), at(k) ≤ p−1

2 .
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Now we apply the usual trick: if two sets of integers coincide, then the prod-
uct over all elements must be the same. In our case, this means that

∏n
i=1 aia ≡∏n

i=1(−1)s(i)at(i) mod p. The left hand side equals (a1a) · (a2a) · · · (ana) =
an

∏n
i=1 ai, whereas the right hand side is

∏n
i=1(−1)s(i) ·

∏n
i=1 at(i). But we have∏n

i=1 at(i) =
∏n
i=1 ai by the preceding paragraph. Thus we find an

∏n
i=1 ai ≡∏n

i=1(−1)s(i)
∏n
i=1 ai, and since the product over the ai is coprime to p, it may

be canceled; this proves the claim.

Let’s apply this to give a proof for our conjecture that ( 2
p ) = (−1)(p

2−1)/8.
We have to count the number of sign changes when we multiply the “half system”
A = {1, 2, . . . , p−1

2 } by 2. Assume first that p = 4k + 1, i.e. p−1
2 = 2k.

[1] · [2] = [2]
[2] · [2] = [4]

. . . = . . .

[k] · [2] = [2k]
[k + 1] · [2] = [2k + 2] = −[2k − 1]

. . . = . . .

[2k] · [2] = [4k] = −[1]

Here 2a ≤ 2k for a < k, that is for a = 1, 2, . . . , k, so there are no sign changes
at all for these a. If k < a ≤ 2k, however, then 2k < 2a ≤ p − 1, hence
1 ≤ p − 2a < p − 2k = 2k + 1, which implies that there are sign changes for
each a in this interval. Since there are exactly k such a, Gauss’s Lemma says
that ( 2

p ) = (−1)k; we only have to check that k ≡ p2−1
2 mod 2. But this follows

from p2−1
8 = 1

8 (p− 1)(p+ 1) = 1
8 · 4k(4k + 2) = k(2k + 1).

Now assume that p = 4k − 1; then there are no sign changes whenever
1 ≤ a ≤ k − 1, and there are exactly k sign changes for k ≤ a < 2k, so again
we have ( 2

p ) = (−1)k. But now p2−1
8 = 1

8 (p− 1)(p+ 1) = (2k − 1)k shows that

k ≡ p2−1
2 mod 2, and we have proved

Proposition 8.8. The prime 2 is a quadratic residue of the odd prime p if and
only if p = 8k ± 1; in other words: ( 2

p ) = (−1)(p
2−1)/8.

As a corollary, consider the Mersenne numbers Mq, where q is odd and
p = 2q + 1 is prime. If q ≡ 3 mod 4, then p ≡ 7 mod 8, hence (2/p) = 1. By
Euler’s criterion, this means that 2q = 2(p−1)/2 ≡ 1 mod p, and this in turn
shows that p |Mq.

Corollary 8.9. If p = 2q + 1 ≡ 7 mod 8 is prime, then p | Mq, the q-th
Mersenne number.

In particular, 23 | M11 and 83 | M41. Thus some Mersenne numbers can
be seen to be composite without applying the Lucas-Lehmer test. There are
similar (but more complicated) rules for p | Mq when p = 4q + 1; in this case,
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we have to study 2(p−1)/4 mod p, which leads us to quartic reciprocity. There
is a quartic reciprocity law, but this cannot be formulated in Z: Gauss realized
in 18321 one has to enlarge Z to the ring Z[i] = {a + bi : a, b ∈ Z, i2 = −1} to
do that.

8.3 The Quadratic Reciprocity Law

Here it comes:

Theorem 8.10. For distinct odd primes p and q, we have(p
q

)(q
p

)
= (−1)

p−1
2

q−1
2 .

What Theorem 8.10 says is that p is a square modulo q if and only if q is a
square modulo p, except in the case where both p and q are ≡ 3 mod 4, when
p is a square modulo q if and only if q is a nonsquare modulo p. This is a very
surprising result, because at first sight the worlds Z/pZ and Z/qZ seem totally
different, and there is no apparent reason why they should be related at all. A
preliminary version of the reciprocity law was discovered already around 1742
by Euler in his research on prime divisors of numbers of the form an ± bn (like
Mersenne or Fermat numbers), and Euler’s final version was published 1785
(two years after his death). It was rediscovered by Legendre in 1788, who gave
an incomplete proof. When the Gauss rediscovered it at the age of 18, it took
even him a whole year to find a proof (April 8, 1796); he found a simpler proof
ten weeks later, but this proof used the theory of binary quadratic forms. The
proof using Gauss’s Lemma was his third published proof, and he gave eight
different proofs altogether.

The proof we shall give is Eisenstein’s version of Gauss’s third proof. It uses
the following variant of Gauss’s Lemma:

Lemma 8.11 (Gauss’s Lemma). Let p = 2m + 1 be an odd prime, a an
integer not divisible by p, and A = {1, 2, . . . ,m} a half-system modulo p. Write

a · i = pqi + ri, 1 ≤ ri ≤ p− 1, (8.2)

for 1 ≤ i ≤ m. Then (ap ) = (−1)r, where r is the number of residues ri that are
> p

2 .

Now let’s look at a ·i = pqi+ri; we clearly have pqi = ai−ri with 0 < ri < p,
hence qi = baip c. If we sum up all the n equations in (8.2), we therefore get

a
m∑
i=1

i = p
m∑
i=1

⌊ai
p

⌋
+

m∑
i=1

ri.

What can we say about the ri? We know that exactly r of them are from the
interval [m+1, 2m], hence are equal to p−aj for some aj , while the other m−r

1Actually, around 1816; he was a bit slow in publishing results, if he published them at all.
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residues are elements from the half system A. Thus ri ≡ 1 + aj mod 2 for r of
the equations, and ri ≡ aj mod 2 for the other n − r equations. This implies
r1 + . . .+ rm ≡ r + a1 + . . . am mod 2, and we get

m∑
i=1

⌊ai
p

⌋
≡ p

m∑
i=1

⌊ai
p

⌋
= a

m∑
i=1

iai −
m∑
i=1

ri ≡ r mod 2

assuming that a is odd. Using Gauss’s Lemma, we deduce

Proposition 8.12. For odd integers a and odd primes p = 2m + 1 with p - a
we have (a

p

)
= (−1)r, where r =

m∑
i=1

⌊ai
p

⌋
.

In particular, if q = 2n+ 1 is a prime different from p, then we have(q
p

)
= (−1)r, where r =

m∑
i=1

⌊qi
p

⌋
,

(p
q

)
= (−1)s, where s =

n∑
i=1

⌊pi
q

⌋
The quadratic reciprocity theorem therefore boils down to the statement that

m∑
i=1

⌊qi
p

⌋
+

n∑
i=1

⌊pi
q

⌋
≡ p− 1

2
· q − 1

2
mod 2.

But this follows immediately from Eisenstein’s observation that
m∑
i=1

⌊qi
p

⌋
+

n∑
i=1

⌊pi
q

⌋
is the number of lattice points inside the rectangle R with corners (1, 1) and
(p−1

2 , q−1
2 ).

In fact, consider the line L through the origin and (p, q), that is, with the
equation y = q

px. There is no lattice point (a point with integral coordinates)
on L between x = 0 and x = p: in fact, if (r, s) were such a point, then s = q

pr,
that is, s

r = q
p with 0 < r < p. But the fraction q

p is in its lowest terms since p
and q are different primes. The number of lattice points inside the rectangle R
with x-coordinate x = i are (i, 1), (i, 2), . . . , (i, b qip c). This means that

m∑
i=1

⌊qi
p

⌋
is the number of lattice points inside R below L. By the same reasoning (as can
be seen by switching the x- and y-axis),

n∑
i=1

⌊pi
q

⌋
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is the number of lattice points inside R and above the line L.

Now let us finish the proof of Proposition 7.3 that the Fermat number Fn is
prime if and only if 3(Fn−1)/2 ≡ −1 mod Fn. We have to do the “only if” part,
so assume that Fn is prime. Then (3/Fn) = (Fn/3), and since Fn = 22n

+ 1 ≡
2 mod 3, we find (3/Fn) = −1. Euler’s criterion now proves the claim.

8.4 The Jacobi Symbol

The reciprocity law for the Legendre symbol is an amazing piece of insight; for
computing Legendre symbols, it is less suited. The reason is simple: before
we can invert a symbol (n/p), we have to find the prime factorization of n.
Here’s an example: suppose you want to compute (39/59); then 39 = 3 · 13, so
(39/59) = (3/59)(13/59) = −(59/3)(59/13) bye the quadratic reciprocity law,
hence (39/59) = −(2/3)(7/13) = (7/13) by the second supplementary law, so
(39/59) = (13/7) = (−1/7) = −1.

Now we know that finding the prime factorization of an integer n isn’t much
fun if n is big. Fortunately, there’s a better way: the reciprocity law for the
Jacobi symbol. The trick is simple: invert the Legendre symbols as if the
composites that occur were primes. In our example, (39/59) = −(59/39) =
−(20/39) = −(5/39) = −(39/5) = −1.

Why does this work? Well, for a start we have do define what a symbol like
(59/39) should mean. This is easy: assume that n is an odd positive integer
with prime factorization = p1 · · · pr; then we put (m/n) := (m/p1) · · · (m/pr),
where the symbols on the right hand side are Legendre symbols; (m/n) is called
the Jacobi symbol. Now we claim

Theorem 8.13 (Reciprocity Law for Jacobi Symbols). If m and n are
coprime positive odd integers, then(m

n

)( n
m

)
= (−1)

m−1
2

n−1
2 .

Moreover, we have the supplementary laws(−1
n

)
= (−1)

n−1
2 ,

( 2
n

)
= (−1)

n2−1
8 .

Thus the quadratic reciprocity law holds for Jacobi symbols! There are two
possible approaches to a proof: either we redo our proof of the reciprocity law
for the Legendre symbols (the only problem is generalizing Gauss’s Lemma to
composite values of m), or we reduce the reciprocity law for Jacobi symbols to
the reciprocity law for Legendre symbols. We will do the latter here.

Proof. Let us start with the first supplementary law. Write n = p1 · · · pr; then(−1
n

)
=

(−1
p1

)
· · ·

(−1
pr

)
= (−1)

p1−1
2 +...+ pr−1

2 .
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Thus it remains to show that

n− 1
2
≡ p1 − 1

2
+ . . .+

pr − 1
2

mod 2. (8.3)

This is done by induction. We start with the observation that (a− 1)(b− 1) ≡
0 mod 4 for odd integers a, b, hence ab−1 ≡ (a−1)+(b−1) mod 4, and dividing
by 2 gives

ab− 1
2
≡ a− 1

2
+
b− 1

2
mod 2.

Now use induction.
Now let us treat the reciprocity law similarly. Write m = p1 · · · pr and

n = q1 · · · qs; then(m
n

)( n
m

)
=

r∏
i=1

s∏
j=1

(pi
qj

)(qj
pi

)
=

r∏
i=1

s∏
j=1

(−1)(pi−1)(qj−1)/4,

and our claim will follow if we can prove that

m− 1
2

n− 1
2
≡

r∑
i=1

s∑
j=1

pi − 1
2

qj − 1
2

mod 4.

But this follows by multiplying the two congruences you get by applying (8.3)
to m and n.

Finally, consider the second supplementary law. Similar to the above, ev-
erything boils down to showing

n2 − 1
8

≡ p2
1 − 1
8

+ . . .+
p2
r − 1
8

mod 2.

Now clearly 16 | (a2 − 1)(b2 − 1) (as a matter of fact, even this product is even
divisible by 64), hence

(ab)2 − 1 ≡ a2 − 1 + b2 − 1 mod 16.

Now induction does the rest.

Exercises

8.1 Use Gauss’s Lemma to prove that (−2
p

) = +1 or −1 according as p ≡ 1, 3 mod 8
or p ≡ 5, 7 mod 8.

8.2 Show that there are infinitely many primes p ≡ 1 mod 3.
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