DISCRETE MATHEMATICS

PROBLEMS

More problems from last year's exams.
(1) Let $A B C D$ be a square with $|A B|=1$. Show that if we select 101 points in the interior of this square, there are at least two whose distance is less than $\frac{1}{5 \sqrt{2}}$.
(2) Determine the number of integer solutions to

$$
x_{1}+x_{2}+x_{3}+x_{4}=23,
$$

where $2 \leq x_{i} \leq 7$ for all $1 \leq i \leq 4$.
(3) Find the coefficient of x^{33} in $\left(x^{3}+x^{5}+x^{7}+x^{9}+x^{11}\right)^{7}$.
(4) Use generating functions to solve the recurrence sequence $a_{0}=0, a_{1}=2$, $a_{n}=2 a_{n-1}+2 a_{n-2}$.
(5) Find the generating function for the sequence $\left\{a_{n}\right\}$, where $a_{0}=0$ and $a_{n}=1^{2}+2^{2}+\ldots+n^{2}$ for $n \geq 1$.
(6) Find the generating function for the sequence $a_{n}=3 n+2^{n}$ for $n \geq 0$.
(7) Find the coefficient of x^{4} in $\frac{1}{(1-2 x)^{7}}$.
(8) Find the generating function for the recurring sequence defined by $a_{0}=1$, $a_{n}-2 a_{n-1}=n$ for $n \geq 1$. Use this to give a formula for a_{n}.
(9) Solve the recurrence relation $a_{0}=4, a_{1}=7, a_{n}=5 a_{n-1}-6 a_{n-2}$.
(10) Solve the recurrence relation $a_{0}=1, a_{n}-2 a_{n-1}=3^{n}$ for $n \geq 1$.

