DISCRETE MATHEMATICS

PROBLEMS

More problems from last year's exams.

- (1) Let *ABCD* be a square with |AB| = 1. Show that if we select 101 points in the interior of this square, there are at least two whose distance is less than $\frac{1}{5\sqrt{2}}$.
- (2) Determine the number of integer solutions to

 x_1

$$+x_2 + x_3 + x_4 = 23,$$

where $2 \le x_i \le 7$ for all $1 \le i \le 4$.

- (3) Find the coefficient of x^{33} in $(x^3 + x^5 + x^7 + x^9 + x^{11})^7$.
- (4) Use generating functions to solve the recurrence sequence $a_0 = 0$, $a_1 = 2$, $a_n = 2a_{n-1} + 2a_{n-2}$.
- (5) Find the generating function for the sequence $\{a_n\}$, where $a_0 = 0$ and $a_n = 1^2 + 2^2 + \ldots + n^2$ for $n \ge 1$.
- (6) Find the generating function for the sequence $a_n = 3n + 2^n$ for $n \ge 0$.
- (7) Find the coefficient of x^4 in $\frac{1}{(1-2x)^7}$.
- (8) Find the generating function for the recurring sequence defined by $a_0 = 1$, $a_n 2a_{n-1} = n$ for $n \ge 1$. Use this to give a formula for a_n .
- (9) Solve the recurrence relation $a_0 = 4, a_1 = 7, a_n = 5a_{n-1} 6a_{n-2}$.
- (10) Solve the recurrence relation $a_0 = 1$, $a_n 2a_{n-1} = 3^n$ for $n \ge 1$.