Discrete Mathematics

Midterm 2, April 29, 2007
April 29, 2007

1. Determine (with explanations!) whether the following functions are injective, surjective, or bijective.
(a) $f: \mathbb{Z} \longrightarrow \mathbb{Z}, f(x)=2 x+1$;
(b) $f: \mathbb{Q} \longrightarrow \mathbb{Q}, f(x)=2 x+1$.
(a) $f: \mathbb{Z} \longrightarrow \mathbb{Z}, f(x)=2 x+1$. If $f(x)=f(y)$, then $2 x+1=2 y+1$, hence $x=y$. This shows that f is injective. Since the image of f only contains odd numbers, it is not surjective, and therefore not bijective.
(b) $f: \mathbb{Q} \longrightarrow \mathbb{Q}, f(x)=2 x+1$. As above, f is injective. Given $y \in \mathbb{Q}$, we find $y=2 x+1$ for $x=\frac{y-1}{2}$. Since x is rational if y is rational, f is surjective, and therefore bijective.
2. If 11 integers are selected from $\{1,2,3, \ldots, 100\}$, show that there are at least two, say x and y, such that

$$
0 \leq \sqrt{x}-\sqrt{y}<1
$$

Assume we want to find a counterexample. We take $x=1$; for $\sqrt{y}-\sqrt{x}$ to be ≥ 1 we need to take $y \geq 4$, so let us assume $y=4$. For $\sqrt{z}-\sqrt{y}$ to be ≥ 1 we should take $z \geq 9$ etc. Thus the squares $1,4,9, \ldots, 100$ play an important role. After these preparations, it is easy to write down a conclusive proof:
Since there are 10 squares between 1 and 100 and we have 11 numbers, two of them must be in the same interval bounded by successive squares, say $n^{2} \leq x \leq y<(n+1)^{2}$. But then $n \leq \sqrt{x} \leq \sqrt{y}<n+1$, hence $0 \leq \sqrt{x}-\sqrt{y}<1$ as desired.
3. Determine the number of integer solutions of

$$
x_{1}+x_{2}+x_{3}+x_{4}=19
$$

with $0 \leq x_{j}<8$ for $j=1,2,3,4$.
We first solve the problem using inclusion-exclusion.

- The number of solutions with $x_{j} \geq 0$ is $\binom{22}{3}$ (distribute 19 apples to 4 kids, i.e., count words with 19 A's and 3 bars).
- The number of solutions where at least one x_{j} is ≥ 8 is $\binom{14}{3}$ (replace e.g. x_{1} by $y_{1}=x_{1}-8$).
- The number of solutions where at least two x_{j} are ≥ 8 is $\binom{6}{3}$.
- There are no solutions in which three x_{j} are ≥ 8.

By the inclusion-exclusion principle, the number of solutions is

$$
\binom{22}{3}-\binom{4}{1}\binom{14}{3}+\binom{4}{2}\binom{6}{3}=204
$$

The second solution starts with the observation that the number of solutions we are looking for is the coefficient of x^{19} in the expression

$$
\left(1+x+x^{2}+\ldots+x^{7}\right)^{4}=\left(\frac{x^{8}-1}{x-1}\right)^{4}
$$

Since the exponents of x in $\left(x^{8}-1\right)^{4}$ are divisible by 8 , we only have the following possibilities:

- $x^{19}=x^{0} x^{19}$, where the first factor x^{0} is taken from $\left(x^{8}-1\right)^{4}$, the second one from $(x-1)^{-4}$. The coefficient of x^{0} in $\left(x^{8}-1\right)^{4}$ is 1 , that of x^{19} in $(x-1)^{-4}$ is $\binom{-4}{19}(-1)^{-23}=\binom{22}{3}$.
- $x^{19}=x^{8} x^{11}$; the coefficient of x^{8} in $\left(x^{8}-1\right)^{4}$ is $-\binom{4}{1}$, that of x^{11} in $(x-1)^{-4}$ is $-\binom{-4}{11}=\binom{14}{3}$.
- $x^{19}=x^{16} x^{3}$; here the coefficients are $\binom{4}{2}$ and $-\binom{-4}{3}=\binom{6}{3}$, respectively.

Thus the coefficient of x^{19} we are looking for is

$$
\binom{22}{3}-\binom{4}{1}\binom{14}{3}+\binom{4}{2}\binom{6}{3}=204
$$

4. Find the coefficient of the constant term in
(a) $\left(2 x^{3}+\frac{1}{3 x}\right)^{12}$.
(b) $\left(2 x^{3}+\frac{1}{3 x}\right)^{13}$.
(c) $\left(2 x^{3}+\frac{1}{3 x}\right)^{n}$ for a general integer $n \geq 0$.

The binomial theorem tells us that

$$
\left(2 x^{3}+\frac{1}{3 x}\right)^{n}=\sum_{j=0}^{n}\binom{n}{j}\left(2 x^{3}\right)^{j}\left(\frac{1}{3 x}\right)^{n-j} .
$$

The term $\left(2 x^{3}\right)^{j}(3 x)^{j-n}$ has degree $3 j+j-n=4 j-n$. Thus we only get constant terms if n is a multiple of 4 , and this means that the answer to question b) is 0 .
If $n=4 m$, however, then we have to look at the term with $j=m$, and we find that it equals

$$
\binom{4 m}{m}\left(2 x^{3}\right)^{m}\left(\frac{1}{3 x}\right)^{3 m}=2^{m} 3^{-3 m}\binom{4 m}{m} .
$$

For $m=3$, this equals $\binom{12}{3} \frac{8}{27}$.
5. Use generating functions to solve the recurrence relation $a_{0}=2, a_{1}=5$, and $a_{n+1}=5 a_{n}-6 a_{n-1}$ for $n \geq 1$.

We have

$$
a_{n+1} x^{n+1}-5 a_{n} x^{n+1}+6 a_{n-1} x^{n+1}=0
$$

Adding these up for $n=1,2, \ldots$ and setting $F(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ we get

$$
F(x)-a_{0}-a_{1} x-5 x\left(F(x)-a_{0}\right)+6 x^{2} F(x)=0
$$

hence

$$
F(x)=\frac{2-5 x}{1-5 x+6 x^{2}}
$$

Since $1-5 x+6 x^{2}=(1-2 x)(1-3 x)$, a partial fraction decomposition gives

$$
\frac{2-5 x}{1-5 x+6 x^{2}}=\frac{1}{1-2 x}+\frac{1}{1-3 x}
$$

Using the geometric series yields

$$
F(x)=\sum_{n=0}^{\infty}(2 x)^{n}+\sum_{n=0}^{\infty}(3 x)^{n}
$$

and comparing the coefficient of x^{n} we get

$$
a_{n}=2^{n}+3^{n}
$$

for all $n \geq 0$.
6. Use generating functions to solve the recurrence relation $a_{0}=2$, and $a_{n+1}=2 a_{n}-1$ for $n \geq 0$.

As above, we find $a_{n+1} x^{n+1}-2 x a_{n} x^{n}=x^{n+1}$, hence

$$
F(x)-a_{0}-2 x F(x)=x \sum_{n=0}^{\infty} x^{n}=\frac{x}{1-x} .
$$

This shows that

$$
F(x)(1-2 x)=2+\frac{x}{1-x}
$$

hence

$$
\begin{aligned}
F(x) & =\frac{2}{1-2 x}+\frac{x}{(1-x)(1-2 x)} \\
& =\frac{2}{1-2 x}+\frac{1}{1-x}-\frac{1}{1-2 x}=\frac{1}{1-2 x}+\frac{1}{1-x} .
\end{aligned}
$$

Comparing the coefficients of x^{n} we find

$$
a_{n}=2^{n}+1 .
$$

Remark. The formulas for a_{n} in problems 5 and 6 were so simple that you could actually have guessed them. But as I said repeatedly, what you should demonstrate is not how to solve recurrence relations but that you know how to use generating functions.

