DISCRETE MATHEMATICS

HOMEWORK 6

(1) How many 8 -digit numbers are there whose digits are from $\{1,2,3,4,5,6\}$ such that each digit occurs at least once?

We count all numbers, subtract those made from only 5 digits, add those made from 4 digts, etc.

Thus there are $6^{8}-\binom{6}{1} \cdot 5^{8}+\binom{6}{2} \cdot 4^{8}-\binom{6}{3} \cdot 3^{8}+\binom{6}{4} \cdot 2^{8}-\binom{6}{5}$ such numbers.
(2) How many numbers $1 \leq n \leq 1000$ are not a perfect square? How many are neither perfect squares nor cubes?

The squares are $1^{2}, 2^{2}, \ldots, 31^{2}=961$; thus there are $1000-31=969$ nonsquares.

The cubes are $1^{3}, 2^{3}, \ldots, 10^{3}=1000$; among these cubes, there are three sixth powers that have been counted among the squares, namely $1=1^{6}$, $4^{3}=2^{6}$, and $9^{3}=3^{6}$. Thus there are $1000-31-10+3=962$ numbers that are neither squares nor cubes.
(3) Find the number of integer solutions for the following equations:
(a) $x_{1}+x_{2}+x_{3}+x_{4}=20,0 \leq x_{i} \leq 7$.
(b) $x_{1}+x_{2}+x_{3}+x_{4}=20, x_{i} \geq 0, x_{2}$ and x_{3} even.
(c) $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=30,2 \leq x_{1} \leq 4,3 \leq x_{i} \leq 8$ for $i=2,3,4,5$.
(d) $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=30, x_{i} \geq 0, x_{2}$ even, x_{3} odd.

Actually finding the number of solutions is difficult in some of the cases. I'm content with identifying the number of solutions with a coefficient in some power series (and I should have said so, but ...). Let N denote the number of solutions; then N is the coefficient of
(a) x^{20} in $\left(1+x+x^{2}+\ldots+x^{7}\right)^{4}$.
(b) x^{20} in $\left(1+x+x^{2}+\ldots\right)^{2}\left(1+x^{2}+x^{4}+\ldots\right)^{2}$.
(c) x^{30} in $\left(x^{2}+x^{3}+x^{4}\right)\left(x^{3}+x^{4}+\ldots+x^{8}\right)^{4}$.
(d) x^{30} in $\left(1+x+x^{2}+\ldots\right)^{3}\left(1+x^{2}+x^{4}+\ldots\right)\left(x+x^{3}+x^{5}+\ldots\right)$.
(4) Find the coefficient of x^{50} in $\left(x^{7}+x^{8}+x^{9}+\ldots\right)^{6}$.

This is the same as the coefficient of x^{8} in $\left(1+x^{2}+x^{3}+\ldots\right)^{6}=(1-x)^{-6}$, and this coefficient is $\binom{-6}{8}=\binom{13}{8}=\binom{13}{5}$.
(5) Find the coefficient of x^{15} in $\frac{x^{3}-5 x}{(1-x)^{3}}$.

This is the same as the coefficient of x^{14} in $\frac{x^{2}-5}{(1-x)^{3}}$. Now $(1-x)^{-3}=$ $\sum_{n \geq 0}(-1)^{n}\binom{-3}{n} x^{n}$, so

$$
\begin{aligned}
\left(x^{2}-5\right)(1-x)^{-3} & =\sum_{n \geq 0}(-1)^{n}\binom{-3}{n} x^{n+2}-5 \sum_{n \geq 0}(-1)^{n}\binom{-3}{n} x^{n} \\
& =\sum_{n \geq 2}(-1)^{n}\binom{-3}{n-2} x^{n}-5 \sum_{n \geq 0}(-1)^{n}\binom{-3}{n} x^{n}
\end{aligned}
$$

from which we see that the coefficient of x^{14} is $\binom{-3}{12}-5\binom{-3}{14}=\binom{14}{2}-5\binom{16}{2}=$ -509 .

