DISCRETE MATHEMATICS

HOMEWORK 4

(1) Check which of the following relations are equivalence relations: (For showing that a relation is not an equivalence relation it is sufficient to show that one of the three conditions fails to hold.)
(a) On the set L of all lines in the plane \mathbb{R}^{2}, call two lines ℓ_{1} and ℓ_{2} related ($\ell_{1} \mathcal{R} \ell_{2}$) if ℓ_{1} is perpendicular to ℓ_{2}.
(i) reflexivity: no line is perpendicular to itself, so this relation is not reflexive.
(ii) symmetry: If $\ell_{1} \perp \ell_{2}$, then $\ell_{2} \perp \ell_{1}$, so this relation is symmetric.
(iii) transitivity: If $\ell_{1} \perp \ell_{2}$ and $\ell_{2} \perp \ell_{3}$, then $\ell_{1} \| \ell_{3}$, so this relation is not transitive.
(b) Define a relation \mathcal{R} on \mathbb{Z} by saying $x \mathcal{R} y$ for integers x, y if $x+y$ is even.
(i) reflexivity: $x \sim x$ since $x+x=2 x$ is even.
(ii) symmetry: If $x \sim y$, then $x+y$ is even, hence so is $y+x$, and this means $y \sim x$.
(iii) transitivity: Assume that $x \sim y$ and $y \sim z$. Then $x+y$ and $y+z$ are even. Adding shows that $x+2 y+z$ is even, hence so is $x+z$. But then $x \sim z$, and the relation is transitive.
(c) Define a relation \mathcal{R} on \mathbb{Z} by saying $x \mathcal{R} y$ for integers x, y if $x+y$ is odd.
(i) reflexivity: does not hold, since $x+x$ is even, hence $x \sim x$ is false.
(ii) symmetry: holds, because if $x+y$ is odd, then so is $y+x$.
(iii) transitivity: does not hold: if $x+y$ and $y+z$ are odd, then $x+2 y+z$ and $x+z$ are even.
(d) Let T be the set of triangles in \mathbb{R}^{2}, and call two triangles related if they have an angle of the same measure (that is, the same size).
(i) reflexivity: every triangle is equivalent to itself.
(ii) symmetry: If A and B have an equal angle in common, then so do B and A.
(iii) transitivity: Assume that A and B have an equal angle in common, and that the same is true for B and C. Then A and C need not have an equal angle in common: for example, let A be equilateral (three angles of 60°), let B have angles $30^{\circ}, 60^{\circ}$, and 90°, and let C have angles $30^{\circ}, 70^{\circ}$ and 80°. Then $A \sim B$ and $B \sim C$, but not $A \sim C$.
(2) Draw the digraph with vertices $\{a, b, c, d, e, f\}$ and edges $\{(a, b),(a, d),(b, c)$, $(b, e),(d, b),(d, e),(e, c),(e, f),(f, d)\}$. Also determine the adjacency matrix of this digraph.

The adjacency matrix is

$$
\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) .
$$

(3) Let A be a set with 5 elements. How many relations from A to A are there? How many of them are symmetric?

There are as many relations as there are subsets of $A \times A$, and there are exactly 2^{25} of them (for choosing a subset, you have two choices for each element: include it or exclude it; now observe that $A \times A$ has 25 elements).

How many of these 2^{25} relations are symmetric? For selecting a subset of $A \times A$ that represents a symmetric relation we proceed as follows: assume without loss of generality that $A=\{1,2,3,4,5\}$. Consider the set S of all pairs $(a, b) \in A \times A$ with $a \leq b$. For choosing a symmetric relation, select elements from S, and when selecting (a, b) with $a<b$, automatically include (b, a). Since you have 2 choices for each element in S, and since $\# S=2^{15}$, there are exactly 2^{15} symmetric relations from A to A.
(4) For $A=\mathbb{R}^{2}$, define a relation \mathcal{R} on A by $\left(x_{1}, y_{1}\right) \mathcal{R}\left(x_{2}, y_{2}\right)$ if $x_{1}=x_{2}$. Check that \mathcal{R} is an equivalence relation, and describe the equivalence classes geometrically.
(a) reflexivity: $\left(x_{1}, y_{1}\right) \mathcal{R}\left(x_{1}, y_{1}\right)$ since $x_{1}=x_{1}$.
(b) symmetry: If $x_{1}=y_{1}$, then $y_{1}=x_{1}$ etc.
(c) transitivity: If $\left(x_{1}, y_{1}\right) \mathcal{R}\left(x_{2}, y_{2}\right)$ and $\left(x_{2}, y_{2}\right) \mathcal{R}\left(x_{3}, y_{3}\right)$, then $x_{1}=x_{2}$ and $x_{2}=x_{3}$, hence $x_{1}=x_{3}$ and therefore $\left(x_{1}, y_{1}\right) \mathcal{R}\left(x_{3}, y_{3}\right)$.
An equivalence class consists of all points (x, y) with the same x-coordinate, hence forms a vertical line in the Euclidean plane.

