DISCRETE MATHEMATICS

HOMEWORK 4

- (1) Check which of the following relations are equivalence relations: (For showing that a relation is not an equivalence relation it is sufficient to show that one of the three conditions fails to hold.)
 - (a) On the set L of all lines in the plane \mathbb{R}^2 , call two lines ℓ_1 and ℓ_2 related $(\ell_1 \mathcal{R} \ell_2)$ if ℓ_1 is perpendicular to ℓ_2 .
 - (i) reflexivity: no line is perpendicular to itself, so this relation is not reflexive.
 - (ii) symmetry: If $\ell_1 \perp \ell_2$, then $\ell_2 \perp \ell_1$, so this relation is symmetric.
 - (iii) transitivity: If $\ell_1 \perp \ell_2$ and $\ell_2 \perp \ell_3$, then $\ell_1 \parallel \ell_3$, so this relation is not transitive.
 - (b) Define a relation \mathcal{R} on \mathbb{Z} by saying $x\mathcal{R}y$ for integers x, y if x + y is even.
 - (i) reflexivity: $x \sim x$ since x + x = 2x is even.
 - (ii) symmetry: If $x \sim y$, then x + y is even, hence so is y + x, and this means $y \sim x$.
 - (iii) transitivity: Assume that $x \sim y$ and $y \sim z$. Then x + y and y + z are even. Adding shows that x + 2y + z is even, hence so is x + z. But then $x \sim z$, and the relation is transitive.
 - (c) Define a relation \mathcal{R} on \mathbb{Z} by saying $x\mathcal{R}y$ for integers x, y if x + y is odd.
 - (i) reflexivity: does not hold, since x + x is even, hence $x \sim x$ is false.
 - (ii) symmetry: holds, because if x + y is odd, then so is y + x.
 - (iii) transitivity: does not hold: if x + y and y + z are odd, then x + 2y + z and x + z are even.
 - (d) Let T be the set of triangles in \mathbb{R}^2 , and call two triangles related if they have an angle of the same measure (that is, the same size).
 - (i) reflexivity: every triangle is equivalent to itself.
 - (ii) symmetry: If A and B have an equal angle in common, then so do B and A.
 - (iii) transitivity: Assume that A and B have an equal angle in common, and that the same is true for B and C. Then A and C need not have an equal angle in common: for example, let A be equilateral (three angles of 60°), let B have angles 30° , 60° , and 90° , and let C have angles 30° , 70° and 80° . Then $A \sim B$ and $B \sim C$, but not $A \sim C$.
- (2) Draw the digraph with vertices {a, b, c, d, e, f} and edges {(a, b), (a, d), (b, c), (b, e), (d, b), (d, e), (e, c), (e, f), (f, d)}. Also determine the adjacency matrix of this digraph.

The adjacency matrix is

 $\begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$

(3) Let A be a set with 5 elements. How many relations from A to A are there? How many of them are symmetric?

There are as many relations as there are subsets of $A \times A$, and there are exactly 2^{25} of them (for choosing a subset, you have two choices for each element: include it or exclude it; now observe that $A \times A$ has 25 elements).

How many of these 2^{25} relations are symmetric? For selecting a subset of $A \times A$ that represents a symmetric relation we proceed as follows: assume without loss of generality that $A = \{1, 2, 3, 4, 5\}$. Consider the set S of all pairs $(a, b) \in A \times A$ with $a \leq b$. For choosing a symmetric relation, select elements from S, and when selecting (a, b) with a < b, automatically include (b, a). Since you have 2 choices for each element in S, and since $\#S = 2^{15}$, there are exactly 2^{15} symmetric relations from A to A.

- (4) For $A = \mathbb{R}^2$, define a relation \mathcal{R} on A by $(x_1, y_1)\mathcal{R}(x_2, y_2)$ if $x_1 = x_2$. Check that \mathcal{R} is an equivalence relation, and describe the equivalence classes geometrically.
 - (a) reflexivity: $(x_1, y_1)\mathcal{R}(x_1, y_1)$ since $x_1 = x_1$.
 - (b) symmetry: If $x_1 = y_1$, then $y_1 = x_1$ etc.
 - (c) transitivity: If $(x_1, y_1)\mathcal{R}(x_2, y_2)$ and $(x_2, y_2)\mathcal{R}(x_3, y_3)$, then $x_1 = x_2$ and $x_2 = x_3$, hence $x_1 = x_3$ and therefore $(x_1, y_1)\mathcal{R}(x_3, y_3)$.

An equivalence class consists of all points (x, y) with the same x-coordinate, hence forms a vertical line in the Euclidean plane.