DISCRETE MATHEMATICS

HOMEWORK 4

- (1) Check which of the following relations are equivalence relations:
 - (a) On the set L of all lines in the plane \mathbb{R}^2 , call two lines ℓ_1 and ℓ_2 related $(\ell_1 \mathcal{R} \ell_2)$ if ℓ_1 is perpendicular to ℓ_2 .
 - (b) Define a relation \mathcal{R} on \mathbb{Z} by saying $x\mathcal{R}y$ for integers x, y if x + y is even.
 - (c) Define a relation \mathcal{R} on \mathbb{Z} by saying $x\mathcal{R}y$ for integers x, y if x + y is odd.
 - (d) Let T be the set of triangles in \mathbb{R}^2 , and call two triangles related if they have an angle of the same measure (that is, the same size).
- (2) Draw the digraph with vertices $\{a, b, c, d, e, f\}$ and edges $\{(a, b), (a, d), (b, c), (b, e), (d, b), (d, e), (e, c), (e, f), (f, d)\}$. Also determine the adjacency matrix of this digraph.
- (3) Let A be a set with 5 elements. How many relations from A to A are there? How many of them are symmetric?
- (4) For $A = \mathbb{R}^2$, define a relation \mathcal{R} on A by $(x_1, y_1)\mathcal{R}(x_2, y_2)$ if $x_1 = x_2$. Check that \mathcal{R} is an equivalence relation, and describe the equivalence classes geometrically.