DISCRETE MATHEMATICS

HOMEWORK 4

(1) Check which of the following relations are equivalence relations:
(a) On the set L of all lines in the plane \mathbb{R}^{2}, call two lines ℓ_{1} and ℓ_{2} related ($\ell_{1} \mathcal{R} \ell_{2}$) if ℓ_{1} is perpendicular to ℓ_{2}.
(b) Define a relation \mathcal{R} on \mathbb{Z} by saying $x \mathcal{R} y$ for integers x, y if $x+y$ is even.
(c) Define a relation \mathcal{R} on \mathbb{Z} by saying $x \mathcal{R} y$ for integers x, y if $x+y$ is odd.
(d) Let T be the set of triangles in \mathbb{R}^{2}, and call two triangles related if they have an angle of the same measure (that is, the same size).
(2) Draw the digraph with vertices $\{a, b, c, d, e, f\}$ and edges $\{(a, b),(a, d),(b, c)$, $(b, e),(d, b),(d, e),(e, c),(e, f),(f, d)\}$. Also determine the adjacency matrix of this digraph.
(3) Let A be a set with 5 elements. How many relations from A to A are there? How many of them are symmetric?
(4) For $A=\mathbb{R}^{2}$, define a relation \mathcal{R} on A by $\left(x_{1}, y_{1}\right) \mathcal{R}\left(x_{2}, y_{2}\right)$ if $x_{1}=x_{2}$. Check that \mathcal{R} is an equivalence relation, and describe the equivalence classes geometrically.

