Introduction to Cryptography

Final – take home part

December 20, 2006

1. Assume that my RSA-key is (n, e) with

$$\begin{split} n &= 10861745462990897534907816853010793219571, \\ e &= 65537. \end{split}$$

Send me an RSA-encrypted message by email.

2. The Trouble with Chinese Remainders.

Consider the RSA signature protocol; Alice has a public RSA-key (n, e), where n = pq. To sign a message m (or its hash value), she computes $x = m^d \mod n$ and sends (m, x) to Bob, who then checks that $x^e \equiv m \mod n$. Since d is a large integer, Alice will save computing time if she computes x as follows: compute $r \equiv m^{d_p} \mod p$ and $s \equiv m^{d_q} \mod q$, where $d_p e \equiv$ $1 \mod p - 1$ $d_q e \equiv 1 \mod q - 1$, and then use the Chinese remainder theorem to get x.

- (a) Describe in detail how Alice computes x, and show that it works.
- (b) Assume that an error occurs in the computation of s, but that r is computed correctly. Let s' and x' denote the results the computer gives instead of the correct values s and x. Explain why, most likely, gcd((x')^e − m, n) is a nontrivial factor of n.
- (c) Let (n, e) as in problem 1, and consider the message

m = 3141592653589793238462643383.

Alice computes

 $\begin{aligned} r &= 69844585193681467109, \\ s &= 87124120179688940726. \end{aligned}$

Use the Chinese Remainder Theorem to compute x' and use this (together with m, n and e) to factor n.

- (d) Discuss methods to prevent this attack.
- 3. Use Pohlig-Hellman to solve the following DLP: $a \equiv g^x \mod p$ for p = 556988536090052377769, g = 3, and a = 2.