
Introduction to Cryptography

Franz Lemmermeyer

December 15, 2006

Contents

1 Naive Cryptography 3
1.1 Cryptograms . 3
1.2 The Gold Bug . 4
1.3 Frequency Analysis . 4

2 RSA 6
2.1 Background in Number Theory 6
2.2 The Basic Idea . 7
2.3 An Example . 8
2.4 Stupid Things To Do . 9
2.5 Variations . 10
2.6 Some Questions . 11

3 Complexity 12
3.1 Landau’s big-O notation . 12
3.2 Complexity of Basic Arithmetic Algorithms 12

4 Primes 16
4.1 Prime Number Theorem . 16
4.2 Primality Tests . 18
4.3 Background from Number Theory 20
4.4 Primality Proofs . 21
4.5 AKS . 22

5 Factorization Algorithms 28
5.1 Factoring in the Dark Ages . 28
5.2 Pollard’s p− 1 and ρ methods . 31
5.3 Modern Methods . 33

6 The Security of RSA 36
6.1 Breaking RSA . 36
6.2 Using a Shared Modulus . 37
6.3 Other Attacks . 37

1

7 Discrete Logarithms 39
7.1 Cryptographic Tasks . 39
7.2 Diffie-Hellman Key Exchange . 39
7.3 Solving the DLP . 41
7.4 Pohlig-Hellman . 43
7.5 Index Calculus . 45
7.6 Cryptosystems based on DLP . 47

8 Basic Cryptographic Protocols 49
8.1 Authentication . 49
8.2 Zero Knowledge Proofs . 51
8.3 Secret Sharing . 55
8.4 Online Poker . 57
8.5 Number Theoretic Background 57

9 Finite Fields 61
9.1 Polynomials . 61
9.2 The Frobenius Automorphism . 62

10 Pell Conics 65
10.1 Group Law and Parametrization 65
10.2 Factorization Methods . 69
10.3 Primality Tests . 70
10.4 Cryptography using Pell Conics 72

11 Elliptic Curves 76
11.1 The Group Law . 76
11.2 Addition Formulas . 77
11.3 ECM . 79
11.4 ECPP . 81
11.5 Point Counting . 82

12 Elliptic Curve Cryptography 84
12.1 Key Exchange . 84
12.2 Signatures . 85
12.3 Message Encryption via Elliptic Curves 85

2

Chapter 1

Naive Cryptography

1.1 Cryptograms

Cryptograms, like Sudoku these days, are puzzles that can be solved using a
few basic techniques. In a typical cryptogram, a plain text has been encrypted
by replacing each letter by a (usually different) letter.

The basic strategy are best explained by an example:

CAKWQAHZ, OKARZ, IMR SAILLIA EMGPQJYEKMZ JKMWQU YFQ

CXHPEJ ZQMZQ OEYF LKAQ CXAEYU IMR CAQJEZEKM, YFIM YFQ

OEZQZY EMREWERXIP.

AIPCF OIPRK QLQAZKM

We observe that the word YFQ occurs twice. The most common three-letter
word in English is THE (the runner-up is AND). If YFQ corresponds to THE, then
the combination YF should occur often, since TH is a very common two-letter
combination. This is indeed the case, so we assume that Y, F and Q correspond
to T, H and E, respectively.

Next we look at the word OEYF; the only four-letter word ending with TH we
can think of is WITH, so we guess that O and E correspond to W and I. The word
OEZQZY now reads WI*E*T, suggesting that Z is an S. Now ZQMZQ clearly must
be SENSE, hence M is an N.

Now the word CAQJEZEKM ends with ISI*N, so K must be an O. Next YFIM
is TH*N, and since I cannot be an E, it must be an A. Similarly, IMR can only
mean AND, and then OKARZ must be WORDS. Now it is getting easy: EMREWERXIP
is INDI*ID*A*, that is, INDIVIDUAL.

After a few more steps, it is no problem at all to complete the decryption,
and we end up with the following plaintext:

3

CAKWQAHZ, OKARZ, IMR SAILLIA EMGPQJYEKMZ JKMWQU YFQ CXHPEJ ZQMZQ
PROVERBS, WORDS, AND GRAMMAR INFLECTIONS CONVEY THE PUBLIC SENSE

OEYF LKAQ CXAEYU IMR CAQJEZEKM, YFIM YFQ OEZQZY EMREWERXIP.
WITH MORE PURITY AND PRECISION THAN THE WISEST INDIVIDUAL.

AIPCF OIPRK QLQAZKM
RALPH WALDO EMERSON

For getting more practice in solving cryptograms, go to
http://www.geocities.com/cryptogramcorner/

1.2 The Gold Bug

Of course it helps a lot that we are given the empty spaces between the words
as well as the interpunctuation. But even without this help, searching for three-
letter combinations occurring frequently (THE), or simply for the most common
letter (which, in English, usually stands for E), already gives us clues.

Edgar Allen Poe has given us a nice example in his short story Gold Bug
(available online; just use google). In this story, the following encrypted text
needs to be deciphered:

53++!305))6*;4826)4+.)4+);806*;48!8‘60))85;]8*:+*8!83(88)5*!;
46(;88*96*?;8)*+(;485);5*!2:*+(;4956*2(5*-4)8‘8*; 4069285);)6
!8)4++;1(+9;48081;8:8+1;48!85;4)485!528806*81(+9;48;(88;4(+?3
4;48)4+;161;:188;+?;

The most common symbol is 8; if this stands for E, then there should be
triples occurring frequently ending in 8; one such triple is ;48. If you want
to find out how Poe’s character decrypts the whole text, go read the story for
yourself.

1.3 Frequency Analysis

Consider the cryptogram

LIVITCSWPIYVEWHEVSRIQMXLEYVEOIEWHRXEXIPFEMVEWHKVSTYLXZIXLIKII

XPIJVSZEYPERRGERIMWQLMGLMXQERIWGPSRIHMXQEREKIETXMJTPRGEVEKEIT

REWHEXXLEXXMZITWAWSQWXSWEXTVEPMRXRSJGSTVRIEYVIEXCVMUIMWERGMIW

XMJMGCSMWXSJOMIQXLIVIQIVIXQSVSTWHKPEGARCSXRWIEVSWIIBXVIZMXFSJ

XLIKEGAEWHEPSWYSWIWIEVXLISXLIVXLIRGEPIRQIVIIBGIIHMWYPFLEVHEWH

YPSRRFQMXLEPPXLIECCIEVEWGISJKTVWMRLIHYSPHXLIQIMYLXSJXLIMWRIGX

QEROIVFVIZEVAEKPIEWHXEAMWYEPPXLMWYRMWXSGSWRMHIVEXMSWMGSTPHLEV

HPFKPEZINTCMXIVJSVLMRSCMWMSWVIRCIGXMWYMX

4

A frequency analysis shows that the most frequent letter is I, the most
frequent two-letter combination is XL, and the most frequent triple XLI. Use
this information to decrypt the cipher text.

The point of these examples is to show that simple substitution ciphers can
be broken easily using tools such as frequency analysis. This has led to the
invention of much more sophisticated techniques for encrypting messages; one
major weakness of all these systems up to the 1970s was the fact that sender and
receiver both need to agree on a certain method of encrypting and decrypting
messages; if knowledge about the encryption method is leaked, attackers usually
can break the system easily.

For online communications between, say, a bank and its customers, these
classical methods are useless. The fact that online banking is (more or less)
secure these days was made possible by the invention of public-key cryptography.
Before we can describe how it works, we have to review some basic elementary
number theory.

5

Chapter 2

RSA

In this chapter we will first describe the basic idea behind RSA, and then discuss
the resulting problems.

2.1 Background in Number Theory

The basic ingredient of RSA is Fermat’s Little Theorem, according to which
ap−1 ≡ 1 mod p for all primes p and all integers a not divisible by p. Actually
we need a special case of the more general Theorem of Euler-Fermat (aφ(m) ≡
1 mod m whenever gcd(a,m) = 1, applied to m = pq): Let p and q be distinct
odd primes. Then for any integer a coprime to pq, we have a(p−1)(q−1) ≡
1 mod pq. In fact, applying Fermat’s Little Theorem twice we find

a(p−1)(q−1) =
(
aq−1

)p−1 ≡ 1 mod p,

a(p−1)(q−1) =
(
ap−1

)q−1 ≡ 1 mod q.

Thus p | (a(p−1)(q−1) − 1) and q | (a(p−1)(q−1) − 1); since p and q are coprime,
it follows from unique factorization that pq | (a(p−1)(q−1) − 1), and this implies
the claim.

We will also use the Chinese Remainder Theorem. In its simplest form it
claims that a system of congruences

x ≡ a mod m

y ≡ b mod n

can always be solved if m and n are coprime. If, more generally, gcd(m,n) = d,
then the system has a solution if and only if a ≡ b mod d (which is obviously
necessary).

6

2.2 The Basic Idea

Now assume that Alice wants others to send her messages that cannot be read
by anyone who’s listening in. She picks two large prime numbers p and q (in
practice, these should have about 150 digits each); she computes the product N
and chooses an integer 1 < e < (p− 1)(q − 1) coprime to (p− 1)(q − 1). Then
she publishes the pair (N, e), her “public key” (for example by listing it on her
homepage).

How does the encryption work? It is a simple matter to transform any text
into a sequence of numbers, for example by using a 7−→ 01, b→ 02, . . . , with a
couple of extra numbers for blanks, commas, etc. We may therefore assume that
our message is a sequence of integers m < n (if the text is longer, break it up
into smaller pieces). Bob encrypts each integer m as c ≡ me mod N and sends
the sequence of c’s to Alice (by email, say). Now Alice can decrypt the message
as follows: since she knows p and q, she run the Euclidean algorithm on the pair
(e, (p−1)(q−1)) to find integers d, x > 0 such that de−x(p−1)(q−1) = 1 (Bezout
at work again). Now she takes the message c and computes cd mod N . The
result is cd ≡ (me)d = mde = m1+x(p−1)(q−1) = m · (m(p−1)(q−1))x ≡ m mod N :
thus Alice can compute the original text that Bob sent her.

Now assume that Eve is eavesdropping. Of course she knows the pair (N, e)
(which is public anyway), and she also knows the message c that Bob sent to
Alice. This does not suffice for decrypting the message, however, since one
seems to need an inverse d of e mod (p − 1)(q − 1) to do that; it is likely that
one needs to know the factors of N in order to compute d.

Alice Eve Bob
picks two large primes p, q
computes N = pq
picks random e ∈ (Z/φ(N)Z)×

publishes public key (N, e)
(N, e)
−→

computes c ≡ me mod N
c←− sends c to Alice

solves de ≡ 1 mod (p− 1)(q − 1)
computes m ≡ cd mod N

Figure 2.1: The RSA protocol

If Bob and Alice want to exchange messages, each of them has to pick their
own key (so Alice picks primes pA, qA, and Bob pB and qB etc.)

7

2.3 An Example

Here is a worked example of RSA-encryption and decryption using pari, which
you can get from

http : //pari.math.u− bordeaux.fr/download.html

as Pari-2-3-0.exe.
We first need to pick two primes; for this example, we choose them quite

small, say less than 227. The command

random(2^27)

gives you a random number between 1 and 227. The command

p = nextprime(random(2^27))

produces the next prime after this random number. In this way I have produced
two random primes

p = 52431073, q = 59140507.

Multiplying them (type in N = p*q) gives

N = 3100800239774011.

Next we have to pick a random e coprime to phi = (p-1)*(q-1). In order
to increase the probability that e is coprime to φ, we compute

e=random(phi/6)*6+1

This gives me e = 2352184338477589, and with gcd(e,phi) I check that this
gcd is indeed trivial (if it is not, I would simply pick another e).

Now we can “publish” our public key (N, e).
If Fermat wants to send me the message

It is impossible to separate any power higher than the
second into two like powers

then he first has to translate this into a string of numbers:

I T I S I M P O S S I B L E T O
09 20 27 09 19 27 09 13 16 15 19 19 09 02 12 05 27 20 15

S E P E R A T E A N Y P O W E R
19 05 16 05 18 01 20 05 27 01 14 25 27 16 15 23 05 18

etc. Since N has 16 digits and the first two are > 27, we can concatenate the
numbers into blocks of 8; we get

0920270919270913 1615191909021205 2720151905160518 0120052701142527

8

etc. These messages m1, m2, m3, m4 are now encrypted using the public key
(N, e); with

m1 = 0920270919270913; c1=Mod(m1,N)^e

we find

c1 = 1747970118663570,

c2 = 313567858470709,

c3 = 2917959816510238,

c4 = 594119149929740.

Fermat sends me these numbers; for decrypting the messages, I first have to
use my private keys p and q to compute an integer d with de ≡ 1 mod (p −
1)(q − 1); this can be done by d = lift(1/Mod(e,phi)), which gives d =
1226987039051581. Now I decrypt by computing

m1 = Mod(c1,N)^d}

etc., and I find m1 = 920270919270913. This message is broken up into numbers
of length 2 starting from the right; I get

9 20 27 09 19 27 09 13

giving me the plaintext “IT IS IM”. The other cj are taken care of similarly.
For practical purposes, keys of the size of our N are useless since the com-

mand factor(N) almost immediately gives you the prime factors p and q. Using

nextprime(random(10^151))

you can find suitable primes (pseudoprimes actually; but these work just as
well) within a second, and messages transmitted using keys of that size will be
impossible to decrypt even for the guys at NSA.

2.4 Stupid Things To Do

RSA is not a foolproof system; there are many ways of screwing up the system
by doing more or less stupid things. Here we will briefly discuss two of them.

One of the most stupid things you can do is to encrypt the letters one by
one; then there will be something like 26 possible cipher text symbols ci, and a
frequency analysis will easily break your system.

A slightly less stupid thing would be to choose a very small encryption
exponent e. Note that the computing time for encoding could be kept very small
if you could simply pick e = 3 (of course this means that you have to choose
your primes p and q of the form 3n + 2 in order to avoid that (p − 1)(q − 1)
is divisible by 3). Eve cannot use this information alone to break RSA: even if
e = 3, computing d ≡ 1/e mod (p − 1)(q − 1) is impossible without knowing p
and q. The problem is this: assume you would like to send one and the same

9

message m to three users with public keys (N1, 3), (N2, 3) and (N3, 3). You
then compute cj ≡ m3 mod Nj for j = 1, 2, 3 and send them the cj . Now Eve
knows the cj and the Nj , so she can solve the system of congruences

x ≡ c1 mod N1,

x ≡ c2 mod N2,

x ≡ c3 mod N3

for a unique integer x with 1 ≤ x < N1N2N3. I claim that x = m3. In fact,
x ≡ m3 mod Ni, and since m < Nj , we have m3 < N1N2N3. Thus the Chinese
Remainder Theorem allows Eve to recover m3; but then all she needs to do is
compute the cube root1 of m3, and she will find m.

Another reason why too small encryption exponents (actually, e = 216 +1 =
65537 is quite a common choice; the problems described above only occur if
someone sends out the same messsage to more than 65000 people) are a bad
choice is the following: if the message m you want to send satisfies me < N ,
then not only do we have c ≡ me mod N , we actually have c = me, and this
means that anyone can decrypt c by simply computing the e-th root of c. This
problem is only a minor one, however, since it can be avoided by filling up the
plaintext message with blanks, that is, appending zeros to m until it has about
the same size as N .

2.5 Variations

The Chinese Remainder Theorem is often used to speed up calculations. Con-
sider e.g. the problem of decrypting messages in the RSA system: given some c
mod N for N = pq, the decryption requires computing m ≡ cd mod N , where d
typically has hundreds of digits. If you want fast decryption on a system with
small computing power, such as a cell phone, then it would be nice if we could
use a very small decryption exponent d, such as d = 3. Picking d ≤ 1000, say,
would be quite foolish, however, since someone who knows c and N could simply
try all small values of d and just check whether the decrypted message makes
sense.

Now this is where the Chinese Remainder Theorem comes in. Assume that
gcd(p− 1, q − 1) = 2, for example, and solve the system of congruences

d ≡ 3 mod p− 1, d ≡ 5 mod q − 1.

Note that if p ≡ q ≡ 1 mod 4, then these congruences would imply d ≡ 3 mod 4
and d ≡ 5 mod 4, which gives a contradiction; thus the condition gcd(p− 1, q−
1) = 2 is necessary (and sufficient) for solvability.

Now d will be large, in general about the size of (p−1)(q−1); yet decryption
can be performed in a very efficient way: First, find a Bezout representation

1Computing the cube root of an integer is easy; computing the cube root of a residue class
mod N is about as difficult as factoring N .

10

1 = ap + bq. Then, for each encrypted message c, compute m1 ≡ c3 mod p and
m2 ≡ c5 mod q, which is very fast since you need only 2 + 3 = 5 multiplications
modulo p or q. Finally, put M ≡ bqm1 + apm2 mod N : then

M ≡ bqm1 ≡ m1 ≡ c3 ≡ cd mod p,

M ≡ apm2 ≡ m2 ≡ c5 ≡ cd mod q,

hence M ≡ cd ≡ m mod N .

2.6 Some Questions

There are a number of immediate questions that come to mind:

1. (Complexity) Is fast encryption possible? After all, we have to compute
me mod N for quite large values of N and e.

2. Are there enough keys? In other words, if we pick primes p and q with
about 150 digits, are there sufficiently many? If there are only some 1000
or so, someone could try them all in order to factor N .

3. Is it possible to find such primes sufficiently fast? If we would have to
compute away for hours before finding such primes, RSA would be quite
useless as an online encryption tool.

4. How hard is it to factor N?

5. Is it possible to break the RSA-system without factoring N?

6. RSA is based on the fact that factoring is hard. Can other hard problems
in number theory and algebra also be used to set up cryptosystems?

7. In practice, one of the most important problems actually is the following:
if you transmit plain text and if in the transmission a few bits get changed
or lost, nothing serious happens: the text “somewhare ovr the raimbow”
could probably still be read correctly as “somewhere over the rainbow”.
If, however, instead of the RSA-encrypted message c you receive a message
c′ that differs in a single bit from c, then m′ ≡ c′

d mod N will be total
junk. Thus if you want RSA to work in practice, you also will have to
implement strong error-correcting codes.

11

Chapter 3

Complexity

3.1 Landau’s big-O notation

Next we will address the question of how fast we can perform certain calcula-
tions. To this end we introduce the big-O notation: for realvalued functions
f, g : N −→ R≥0 we say that f = O(g) if there is a constant C > 0 such that
f(n) ≤ Cg(n) for all sufficiently large n (more exactly: there are constants C,N
such that f(n) ≤ Cg(n) for all n ≥ N).

Examples: Let f(n) = 2n2 + 106 and g(n) = n2; then f = O(g) since f(n) <
3g(n) for all sufficiently large n. Also f = O(g) for g(n) = n3. It is not true,
however, that f = O(g) for g(n) = n.

The idea behind the big-O notation is that it often allows us to replace a
complicated function f(n) in some estimate by a simple function g(n) that has
about the same growth as f .

3.2 Complexity of Basic Arithmetic Algorithms

In the following we will carefully study how many operations are necessary for
computing the sum and product of integers, or applying the Euclidean algo-
rithm. To this end, we assume that the addition of two bits takes time O(1)
(i.e. there is a constant cost for this addition).

Now let a be an integer written in base 2, and let m be its length (the number
of bits necessary to write it down); for example, 11 = (1011)2 has length 4. In
general, the length of a is given by `(a) = blog(a)c+1, where log is the logarithm
in base 2.

How long does it take to add two integers a and b of lengths m and n, respec-
tively? If m ≥ n, then there are at most m additions, plus another m carries,
thus giving at most 2m bit additions. Thus addition takes O(max{m,n}) bit
operations.

12

What about multiplication? For computing a∗ b we have to write down a at
most n = `(b) times and add; thus we have to add a number of length m+1 (the
1 is for shifting) exactly n − 1 times; thus there are at most O(mn) additions
necessary, at least when we use this naive method.

Since multiplication is such a basic operation, any improvement in the com-
plexity will be most welcome. Schönhage and Strassen found a method for multi-
plying two integers of length n in O(n log n log log n) bit operations. In practice,
this algorithm becomes more practical than the naive method for numbers with
more than 104 bits.

For finding the complexity of performing a division with remainder a = bq+r,
let k denote the length of q. Then we have to subtract a number of size n = `(b)
at most k times, which takes O(kn) bit operations. Since k ≈ m − n, this is
the same as O((m − n)n), and in any case is bounded by O(mn). Here’s an
example:

10110 = 11 · 111 + 1
11
101
11
100
11
1

Very often we are required not to add or multiply integers but residue classes
modulo m. In such a case we assume that these integers are given by their lowest
positive residue classes mod m, and therefore have size `(m). Thus addition and
multiplication mod m takes O(`(m)) and O(`(m)2) bit operations, respectively:
for multiplication, we multiply a and b; the product is < m2; then we divide
ab = mq + r, which takes O(`(m)`(q)) operations; since q < m, this is also
bounded by O(`(m)2).

Division modulo m is more difficult. For computing a/b mod m, we first
assume that gcd(m, b) = 1 (otherwise the division might not be possible). Then
we apply the Euclidean algorithm to m and b and compute a Bezout represen-
tation 1 = mx+ by, and then find that 1/b ≡ y mod m. Afterwards we multiply
a and y mod m.

In order to find out how many operations this takes we have to analyze the
Euclidean algorithm. Here is what we do:

a = q0b + r1, 0 < r1 < b

b = q1r1 + r2, 0 < r2 < r1

r1 = q2r2 + r3, 0 < r3 < r2

. . .

rn−2 = qn−1rn−1 + rn, 0 < rn < rn−1

rn−1 = qnrn.

For computing the first line we need at most O(log b log q0) bit operations, for
the second at most O(log r1 log q1) ≤ O(log b log q1), . . . , and for the last at

13

most O(log rn log qn) ≤ O(log b log qn). Thus we need at most O(log b(log q0 +
log q1 + . . . + log qn)) = O(log b(log q0q1 · · · qn)) bit operations. Now we claim
that q0q1 · · · qn ≤ a. This follows from

a = bq0 + r1 ≥ bq0

= (q1r1 + r2)q0 ≥ r1q0q1

= . . . ≥ rnq0q1q2 · · · qn,

which implies the claim since rn ≥ 1. Thus for performing the Euclidean algo-
rithm on the pair (a, b) we need at most O(log a log b) bit operations. For going
back up in order to compute the associated Bezout representation we need at
most that many operations, and this shows that we can compute a Bezout
representation for the gcd of a and b in at most O(log a log b) bit operations.

It remains to estimate the size of the numbers r and s in a Bezout represen-
tations d = ar + bs of d = gcd(a, b).

It is quite easy to show that these integers can be chosen sufficiently small:
in fact, consider the equation d = ar + bs for arbitrary integers r, s; by adding
or subtracting 0 = ab + b(−a) sufficiently often we can make sure that |r| ≤ b

2 .
Then d = ar + bs shows |bs| = |d − ar| ≤ d + a|r| ≤ b + ba

2 , which implies
|s| ≤ 1 + a

2 . In any case, there exist solutions with |r| < b and |s| < a.
The question, however, is this: do the integers r and s provided by the

extended Euclidean algorithm also satisfy this bound? The answer is yes, but
we will not go into the details here.

Back to division mod m: for computing the inverse of b mod m we compute
integers x, y with 1 = bx + my, which costs O(log b log m) operations; then we
multiply a and b−1 mod m, which takes at most O((log m)2) operations. Since
b < m, this means that division mod m can be performed in at most O((log m)2)
bit operations.

Summary

operation complexity
a + b O(max{log a, log b})
ab O(log a · log b)
a = bq + r O(log b · log q)
gcd(a, b) O(log a · log b)
(a + b) mod m O(log m)
(ab) mod m O((log m)2)
a/b mod m O((log m)2)
ad mod m O(log d(log m)2)

Polynomial Complexity

If an algorithm with input a and b requires O((log a)r log(b)s) bit operations
for integers r, s ≥ 0, then the algorithm is said to run in polynomial time. The

14

algorithms discussed above all run in polynomial time. A similar definition
applies to algorithms with more numbers as input.

An algorithm that requires O(n) bit operations is said to run in exponential
time since n = eln n. The same remark applies if the complexity is O(nr) for
some constant r > 0 since nr = er ln n. For sufficiently large input, polynomial
algorithms run fast than those with exponential running time. This need not
be true for input of a given size: if n has 20 digits, then n1/2 < (log n)100.

Exercises

3.1 Let f(n) =
√

n log n; show that f = O(n
1
2+ε for any (fixed) ε > 0.

3.2 If f1 = O(g) and f2 = O(g), then f1+f2 = O(g) and cf1 = O(g) for any constant
c ∈ R.

3.3 Assume that m and n are coprime integers; for solving the system of congruences

x ≡ a mod m,

x ≡ b mod n,

compute integers r, s with mr + ns = 1, and put x = ans + bmr.

1. Show that this x solves the system.

2. Show that the extended Euclidean algorithm provides you with integers r, s
such that |r| < n and |s| < m.

3. Estimate the complexity of this algorithm; here you may assume that 0 ≤
a < m and 0 ≤ b < n.

3.4 Let f, g ∈ Z[X] be polynomials. What is the complexity for computing f +g and
fg?

3.5 Let f and g be polynomials in (Z/mZ)[X]. What is the complexity for computing
f + g and fg?

3.6 Prove the following rules for gcd’s of natural numbers:

gcd(a, b) =

8><
>:

2 gcd(a
2
, b

2
) if 2 | a, 2 | b;

gcd(a
2
, b) if 2 | a, 2 - b;

gcd(a−b
2

, b) if 2 - ab.

3.7 Show how to compute gcd(91, 77) using these rules. This algorithm is due to
Stein (1961).

3.8 Explain why, in binary arithmetic, Stein’s algorithm can be performed using only
shifting and subtracting.

15

Chapter 4

Primes

4.1 Prime Number Theorem

Let us now address the question of how many primes there are. The first answer
is “infinitely many”, and the beautiful proof was already known to Euclid. If
you have to look for primes with 150 digits, however, then you need to ask (and
answer) more precise questions, such as “how many primes are there between
the numbers n and m?”.

To answer this question, let π(x) denote the number of primes below x.
Table 4.1 gives you an idea of its growth:1

Already Gauss and Legendre conjectured that π(x) ∼ x
ln x (this means that

limx→∞
π(x)

x/ ln x = 1); for example, π(106) = 78, 498 and 106

ln 106 ≈ 72382. Similarly,
π(10149) ≈ 2.915 · 10146 and π(10150) ≈ 2.895 · 10147, hence there must be about
π(10150)−π(10149) ≈ 2.6·10147 primes with 150 digits. This implies in particular
that about one in every 200 odd numbers with 150 digits is a prime.

The proof of the prime number theorem π(x) ∼ x
ln x was given independently

by Hadamard and de la Vallée-Poussin. They used properties of the Riemann
zeta function ζ(s) =

∑
n≥1 n−s, which converges for all s ∈ C with Re s > 1.

Euler’s formula ζ(s) =
∏

(1 − p−s)−1, where the product is over all primes,
shows that ζ(s) has something to do with primes.

As a matter of fact, the prime number theorem follows from the observation
that ζ(s) 6= 0 for all s ∈ C with Re s = 1. This statement makes sense only once
we have extended the zeta function to a meromorphic function in the whole
complex plane; that this can be done was shown by Riemann.

Riemann also conjectured that the only zeros of ζ(s) in the critical strip
0 ≤ Re s ≤ 1 lie on the line Re s = 1

2 ; this is a lot stronger than what is required
for proving the prime number theorem, and in fact its truth would imply sharp
estimates for the error term |π(x)− x

ln x |.
1http://primes.utm.edu/howmany.shtml

16

x π(x)
10 4

100 25
1, 000 168

10, 000 1, 229
100, 000 9, 592

1, 000, 000 78, 498
10, 000, 000 664, 579

100, 000, 000 5, 761, 455
1, 000, 000, 000 50, 847, 534

10, 000, 000, 000 455, 052, 511
100, 000, 000, 000 4, 118, 054, 813

1, 000, 000, 000, 000 37, 607, 912, 018
10, 000, 000, 000, 000 346, 065, 536, 839

100, 000, 000, 000, 000 3, 204, 941, 750, 802
1, 000, 000, 000, 000, 000 29, 844, 570, 422, 669

10, 000, 000, 000, 000, 000 279, 238, 341, 033, 925
100, 000, 000, 000, 000, 000 2, 623, 557, 157, 654, 233

1, 000, 000, 000, 000, 000, 000 24, 739, 954, 287, 740, 860
10, 000, 000, 000, 000, 000, 000 234, 057, 667, 276, 344, 607

100, 000, 000, 000, 000, 000, 000 2, 220, 819, 602, 560, 918, 840
1, 000, 000, 000, 000, 000, 000, 000 21, 127, 269, 486, 018, 731, 928

10, 000, 000, 000, 000, 000, 000, 000 201, 467, 286, 689, 315, 906, 290

Table 4.1: Prime Number Theorem

x pi(x) x/ lnx
1000 168 145

10000 1229 1086
100000 9592 8686

1000000 78498 72382
10000000 664579 620420

100000000 5761455 5428681

Table 4.2: π(x) vs. x/ lnx

17

4.2 Primality Tests

Assume you have picked some random odd 150-digit integer p; how can you tell
whether it is prime or not?2 The first step is to divide p by all primes < 1000
and see whether it has any factors. The easiest way to do that is to multiply
all of these primes together (you only have to do this once) and then apply the
Euclidean algorithm to this product and p.

Fermat Tests and Carmichael Numbers

Once you have checked that p does not have any small prime factors, apply
a Fermat test: pick some integer a coprime to p and check whether ap−1 ≡
1 mod p. If p is prime, this condition will be satisfied; unfortunately it is also
satisfied for some composite numbers such as 341 = 11 · 31 or 211 − 1 = 23 · 89.
In fact, if q is prime and Mq = 2q − 1, then we always have 2Mq−1 ≡ 1 mod Mq

whether Mq is prime or not. Composite integers passing the Fermat test for
base a are called Fermat-pseudoprimes for the base a.

It gets worse: there are integers n that are Fermat pseudo-prime for any
basis a coprime to n, such as 561 = 3 · 11 · 17 (use the pari program

n=561;for(a=2,20,print(a," ",Mod(a,n)^n-1))

to check this). Such integers are called Carmichael numbers. It is easy to see
that numbers of the form (6k + 1)(12k + 1)(18k + 1) are Carmichael if each
factor is prime; for example, 7 · 13 · 19 = 1729 is a Carmichael number. It is
known that there are infinitely many Carmichael numbers.

Euler Pseudo-Primes

The Fermat test was based on Fermat’s Little Theorem ap−1 ≡ 1 mod p for
primes p and integers a coprime to p. There is a similar test based on Euler’s
criterium a

p−1
2 ≡ (a

p) mod p. For odd integers n the left hand side of this
congruence is computed by repeated squaring, and the Jacobi symbol on the
right is evaluated using the quadratic reciprocity law.

The Euler test is better than the Fermat test: clearly every integer passsing
the Euler test also passes the Fermat test, and there are integers passing the
Fermat test that the Euler test recognizes as composites: consider e.g. the
Fermat pseudo-prime 561 for base 5; here pari tells us that 5560/2 = 5280 ≡
67 mod 561, so we don’t even have to compute (5

561) = +1 to know that this
number must be composite. Actually the congruence 672 ≡ 1 mod 561 yields
the factors gcd(67 − 1, 561) = 33 and gcd(67 + 1, 561) = 17. This is a fairly
typical situation: if a number n passes the Fermat test but fails the Euler test,
then one usually gets a factor of n for free.

Are there analogs of Carmichael numbers in this situation? The answer is
no:

2See http://primes.utm.edu/prove/

18

Proposition 4.1. Let n ∈ N be composite and odd. Then the number of integers
a with 1 ≤ a < n coprime to n such that n passes the Euler test a

n−1
2 ≡

(a
n) mod n is less than n

2 .

This leads directly to the primality test (actually a compositeness test) of
Solovay-Strassen: pick an a ∈ {2, . . . , n− 1} at random and do an Euler test. If
it fails, declare n composite; if n passes the test, repeat with a different choice
of a. The probability that a composite number n passes k such tests is less than
2−k.

If a composite number n passes the Euler test for base a, we say that n is
an Euler pseudo-prime for base a and write that n is a epsp(a).

The test of Solovay-Strassen is not used anymore: the Miller-Rabin test
discussed below is stronger and has the same complexity.

The Miller-Rabin Test

Assume that p is an odd integer and write p− 1 = 2ru for some odd integer u.
Then we have

ap−1 − 1 = a2ru−1 − 1 = (a2r−1u + 1)(a2r−1u − 1)

= (a2r−1u + 1)(a2r−2u + 1)(a2r−2u + 1)
= . . .

= (a2r−1u + 1)(a2r−2u + 1) · · · (au + 1)(au − 1).

If p is prime and p - a, then p divides the left hand side. Since p is prime, it
must divide one of the factors on the right hand side. This shows that

Proposition 4.2. Let p = 1 + 2ru for some odd integer u; if p is prime,
then either au ≡ 1 mod p, or there is a j ∈ {0, 1, . . . , r − 1} such that a2ju ≡
−1 mod p.

If n is an odd number, we say it passes the Miller-Rabin test for base a (or
that n is a strong pseudo-prime for base a (we write n is a spsp(a)) if it has the
property described in Prop. 4.2. The three nice properties of the Miller-Rabin
test are:

1. It runs as fast as the Euler test.

2. An integer passing the Miller-Rabin test will also pass the Euler test: any
spsp(a) is also a epsp(a) (in other words: Miller-Rabin is stronger).

3. The probability that a composite number n passes k Miller-Rabin tests
(for randomly chosen a) is less than 4−k.

The last property is a consequence of

Proposition 4.3. Let n ∈ N be composite and odd. Then the number of integers
a with 1 ≤ a < n coprime to n such that n passes the Miller-Rabin test is ≤ φ(n)

4 .

19

Proof. www.mat.uniroma2.it/∼schoof/millerrabinpom.pdf

This bound is best possible: if n = pq for primes p and q, let d = gcd(p−1, q−
1) and write d = gu for g a power of 2 and some odd u. Then it can be shown
that the number of a for which n passes the Miller-Rabin test is u2(1 + g2−1

3).
If d = 2, then there are only two such a, namely a = 1 and a = n− 1.

On the other hand, if p = 2u + 1 and q = 4u + 1 are prime and t is odd,
then d = 2u, and in this case we get that the number of such a is equal to
2u2 = φ(n)/4. If u = 3, then n = pq = 7 · 13, and there should be 18 such
bases. pari shows that n passes the Miller-Rabin test for the following bases:
for a = 1, 9, 16, 22, 29, 53, 74, 79, 81 we have a45 ≡ +1 mod 91, and for a =
10, 12, 17, 38, 62, 69, 75, 82, 90 we have a45 ≡ −1 mod 91.

These probabilistic tests discussed above allow you to find large “probable”
primes quite quickly (in polynomial time). The Miller-Rabin test can actually
be transformed into a deterministic primality test, that is, into a test that either
proves that n is composite or that it is prime. Unfortunately, this works only
if the Generalized Riemann Hypothesis is true, according to which the zeros of
certain generalized zeta functions in the critical strip all have real part 1

2 .

Theorem 4.4. Assume that GRH holds. Let n be an odd composite number,
and write n = 1 + 2ru with 2 - u. If, for all integers a with 1 < a ≤ 2(lnn)2,
the integer n passes the Miller-Rabin test, then n is prime.

Since a single Miller-Rabin tests requires O((log n)2) bit operations, this test
requires O((log n)4), and thus is polynomial. Actally we can replace GRH by
the weaker assumption that the Riemann Hypothesis holds for a small class of
zeta functions, namely those of the form L(s, χ) =

∑
n≥1 χ(n)n−s, where χ is a

quadratic Dirichlet character (for example χ(n) = (n
d) for odd integers d ≥ 1).

4.3 Background from Number Theory

In the following we need a few results from elementary number theory.
Assume that we are given an integer m and an integer a coprime to m. The

smallest exponent n > 0 such that an ≡ 1 mod m is called the order of a mod m;
we write n = ord m(a).

Proposition 4.5. Let a and m be coprime integers. If ad ≡ 1 mod m for some
integer d, then ord m(a) | d. In particular, ord m(a) | φ(m).

Elements g ∈ (Z/mZ)× with ord m(g) = φ(m) are called primitive roots
modulo m.

Proposition 4.6. If p is prime, there are exactly φ(p−1) primitive roots modulo
p.

These results should also be familiar from abstract algebra: the first propo-
sition is a special case of the statement that the order of an element divides
the order of a group, and the second one is a special case of the fact that the
multiplicative group of a finite field is cyclic.

20

4.4 Primality Proofs

We have already seen that the converse of Fermat’s Little Theorem fails. The
following result goes back to Lucas (1891):

Proposition 4.7. Let n be an integer > 1. Assume that for every prime factor
q of n− 1 there is an integer a such that

an−1 ≡ 1 mod n, and

a(n−1)/q 6≡ 1 mod n.

Then n is prime.

Proof. The converse is obvious: if n is prime, just pick a primitive root a mod
n.

Assume therefore that n satisfies the conditions above. We claim that
φ(n) = n − 1, which in turn implies that n is prime (because every element
of {1, 2, . . . , n− 1} must be coprime to n).

In fact, if φ(n) < n − 1, then there is a prime q and some r ≥ 1 such that
qr | (n − 1) but qr - φ(n). Since q | (n − 1) there is an integer a satisfying the
conditions above. Let m be the order of a modulo n. Then m | (n − 1) since
an−1 ≡ 1 mod n, but m - n−1

q because a(n−1)/q 6≡ 1 mod n.
This implies qr | m; but m | φ(n): contradiction.

Primes p for which the factorization of p−1 is known can therefore be proved
prime quite easily. For your average 150-digit prime, however, this might already
be a problem, since factoring p− 1 is only easy if its prime factors are small.3

The following improvement (due to Pocklington 1914) of Lucas’ converse of
Fermat’s Little Theorem is substantial:

Theorem 4.8. Let s be a divisor of n − 1 with s >
√

n. Assume that there is
an integer a such that

an−1 ≡ 1 mod n, gcd(a(n−1)/q − 1, n) = 1

for every prime q | s. Then n is prime.

Thus we can prove n to be prime by factoring only a part of n− 1.

Proof. Assume that n is not prime, and let p ≤
√

n be a prime factor of n. Put
b ≡ a(n−1)/s mod n. Then bs ≡ an−1 ≡ 1 mod n, and in particular

bs ≡ 1 mod p. (4.1)

Next we claim that
bs/q 6≡ 1 mod p (4.2)

for every prime q | s. In fact, assume that bs/q ≡ 1 mod p for some prime q | s.
Then p | (bs/q − 1) = (a(n−1)/q − 1), contradicting the condition on the gcd’s.

Now (4.1) and (4.2) imply that s = ord p(b). Since bp−1 ≡ 1 mod p, Prop.
4.5 tells us that s | p− 1. But then s < p ≤

√
n: contradiction.

3As we will see, primes p for which p− 1 has only small prime factors are useless for RSA.

21

This result has a number of classical corollaries:

Corollary 4.9 (Proth). Let k, l ∈ N with 3 - k and k ≤ 2l+1. Then n = k·2l+1
is prime if and only if 3k2l−1 ≡ −1 mod n.

Proof. Assume that n is prime. Then we have to show that (3
n) = −1; since

l ≥ 2 (if l = 1, then k ≤ 3, hence k ≤ 2 and n ∈ {3, 5}), we know that n ≡
1 mod 4. The quadratic reciprocity law implies (3

n) = (n
3) = (2

3) = −1 because
n = k · 2l + 1 ≡ 2 mod 3. Euler’s criterium now shows that 3k2l−1 ≡ −1 mod n.

Conversely, assume that 3k2l−1 ≡ −1 mod n. Put s = 2l and a = 3; then

an−1 ≡ 1 mod n and a(n−1)/2 ≡ −1 mod n,

so by Pocklington’s test n must be prime.

Corollary 4.10. A Fermat number Fn = 22n

+ 1 is prime if and only if

3(Fn−1)/2 ≡ −1 mod Fn.

Proof. This follows directly from Proth’s test.

Using the arithmetic of quadratic number fields or of finite fields it is easy
to devise primality tests based on the factorization of n + 1; it is even possible
to combine these tests and to show that n is prime using the factorization of
a sufficiently large part of (n − 1)(n + 1). In the special case of Mersenne
numbers Mp = 2p − 1 (for which the factorization of Mp + 1 is known), there is
a particularly simple and effective primality test:

Proposition 4.11. Let p ≥ 2 be prime; set S1 = 4 and Sr+1 = S2
r − 2. Then

Mp is prime if and only if Sp−1 ≡ 0 mod Mp.

4.5 AKS

The primality proofs using the factorizations of n−1 and n+1 are only effective
for small n or for integers of a special form (for example k · 2n ± 1). In any
case, they do not run polynomial time since we do not have any polynomial
time factorization algorithm. The deterministic Miller-Rabin test, on the other
hand, runs in polynomial time but needs to assume the validity of the GRH.

In August 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena pub-
lished their discovery of a deterministic primality test that runs in polyno-
mial time by sending out emails to a couple of number theorists. Their article
“PRIMES is in P” was published in the Annals of Math. 160, 2004.

The basic idea behind their algorithm is the observation

Lemma 4.12. Assume that n and a are coprime integers. Then n is prime if
and only if (X + a)n ≡ Xn + a mod n.

22

Proof. If n is prime, then the binomial coefficients
(
n
k

)
with 1 ≤ k ≤ n − 1 are

divisible by n. Moreover, an ≡ a mod n by Fermat’s Little Theorem.
If n is not prime, let p be a prime divisor of n, and let pk be the largest

power of p dividing n. Then pk -
(
n
p

)
= n(n−1)···(n−p+1)

1·2···p because pk ‖ n, p -
(n− 1) · · · (n− p + 1), and p ‖ p!. Thus the coefficient of Xp in (X + a)n is not
divisible by pk, and therefore not divisible by n.

As a direct test, this is useless: we have to compute n binomial coefficients
mod n. Here’s the next idea: instead of checking (X + a)n ≡ Xn + a mod n,
verify that (X + a)n ≡ Xn + a mod (Xr − 1, n) for suitable values of a and r.

Here is the algorithm:

1. If n = ab for integers a, b ≥ 2, then n is composite.

2. Find r ∈ N such that ord (n mod r) ≥ 4(log n)2+2, and set ` = b2
√

r log nc+
1.

3. If 1 < gcd(a, n) < n for a = 2, 3, . . . , `, then n is composite. If r > n,
then n is prime.4

4. If (X − a)n 6≡ Xn − a mod (Xr − 1, n) for a = 1, 2, . . . , `, then n is
composite.

5. If n has not been declared composite in steps 1 - 4, then n is prime.

There are now three things to prove:

A. If n is prime, the algorithm declares that n is prime in step 5.

B. If n is composite, the algorithm declares that n is composite in step 1, 3
or 4.

C. The algorithm runs in polynomial time.

Assume first that n is prime. Then n is clearly not declared composite in
steps 1, 3, or 4, hence is declared prime in step 5.

Next assume that n is composite, but that the algorithm declares n to be a
prime. Let p ≤

√
n be a prime factor of n. Then we know that

(X − a)n ≡ Xn − a mod (Xr − 1, p) for a = 1, 2, . . . , `

(X − a)p ≡ Xp − a mod (Xr − 1, p) whenever p - a

The first congruence comes from the algorithm and even holds mod (Xr−1, n);
the second congruence holds because p is prime.

Lemma 4.13. Let a be an integer coprime to n, and fix an integer r and a
prime p. Then the set of all integers m such that

(X − a)m ≡ Xm − a mod (Xr − 1, p) (4.3)

is multiplicative.
4We will see below that r ≤ 16(log n)5 + . . ., so this will only happen for n < 109.

23

Proof. Assume that m1 and m2 are integers such that

(X − a)m1 ≡ Xm1 − a mod (Xr − 1, p), (4.4)
(X − a)m2 ≡ Xm2 − a mod (Xr − 1, p). (4.5)

Then

(X − a)m1m2 ≡ (Xm1 − a)m2 mod (Xr − 1, p). (4.6)

Moreover, (4.5) means that

(X − a)m2 − (Xm2 − a) ≡ (Xr − 1)g(X) mod p

for some polynomial g. Replacing X by Xm1 then shows

(Xm1 − a)m2 − (Xm1m2 − a) ≡ (Xrm1 − 1)g(Xm1) mod p.

Since Xr − 1 divides Xrm1 − 1), this implies

(Xm1 − a)m2 − (Xm1m2 − a) ≡ 0 mod (Xr − 1, p).

Together with (4.6) this implies

(X − a)m1m2 ≡ Xm1m2 − a mod (Xr − 1, p),

which is what we wanted to prove.

Since we know that m = n and m = p satisfy (4.3), the multiplicativity of
the exponent implies that (4.3) holds for every integer of the form m = pinj

with i, j ≥ 0. Now consider the subgroup G of (Z/rZ)× generated by the
residue classes of p and n modulo r, let t = #G denote its order, and set
L = {pinj : 0 ≤ i, j ≤

√
t}. The elements of L are all < n2

√
t. The residue

classes of the elements in L are in G; since there are (b
√

tc + 1)2 > t = #G
elements in L, at least two of them must be congruent modulo r. Thus there
exist m1 = pi1nj1 and m2 = pi2nj2 in L with (i1, j1) 6= (i2, j2) and m2 = m1+kr
for some integer k.

Now we find

(X − a)m2 ≡ Xm2 − a since m2 ∈ L

= Xm1+kr − a since m2 = m1 + kr

≡ Xm1 − a since Xr ≡ 1 mod (Xr − 1)
≡ (X − a)m1 mod (Xr − 1, p) since m1 ∈ L

Thus we know that (X−a)m1 ≡ (X−a)m2 mod (Xr−1, p) for all 1 ≤ a ≤ `.
We claim that this implies m1 = m2. Using this equality we can complete the
proof as follows. We have pi1nj1 = pi2nj2 ; cancelling gives pr = ns for positive
integers r, s, which implies that n is a power of p; since we assumed that n is
composite, n is a nontrivial power of p: but then n would not have survived
step 1.

Now let us prove

24

Lemma 4.14. Assume that (X − a)m1 ≡ (X − a)m2 mod (Xr − 1, p) for all
1 ≤ a ≤ `. Then m1 = m2.

Proof. Assume without loss of generality that m2 ≥ m1, and consider the poly-
nomial b(Z) = Zm1−Zm2 . We will show that b has more than m2 = deg b roots
in some field; this will imply that b is the zero polynomial, hence that m1 = m2.

Let η be a root of Xr−1 in some extension field of Fp. Then the congruence
(X − a)m1 ≡ (X − a)m2 mod (Xr − 1, p) implies (η − a)m1 = (η − a)m2 in
Fq = Fp(η). This in turn means that η − a is a root of b(Z) in Fq.

Now observe that if α and β are roots of b, then so is αβ (this is because α

is a root of b if and only if αm1 = αm2). Thus the elements
∏`

a=1(η − a)e are
roots of b for all e ≥ 0.

Let `′ = b2
√

t log nc+ 1. Then `′ < ` because t = #G ≤ #(Z/rZ)× ≤ r − 1
and ` = b2

√
r log nc+ 1. From the above we deduce that every element of

S =
{ `′∏

a=1

(η − a)e : e ∈ {0, 1}
}

is a root of b. We now claim

Lemma 4.15. If η is a primitive r-th root of unity, then #S = 2`′ .

Assuming this for the moment, we can complete the proof as follows. The
polynomial b(Z) = Zm1 − Zm2 has at least 2`′ roots in Fq. Now

2`′ = 2b2
√

t log nc+1 > 22
√

t log n = n2
√

t ≥ m2 = deg b

shows that b has more than deg b = m2 roots, hence must be 0.

It remains to give a

Proof of Lemma 4.15. We have to show that the 2`′ products
∏`′

a=1(η− a)e are
pairwise distinct elements of Fq. Note that these elements are values at X = η

of the polynomials
∏`′

a=1(X−a)e ∈ Fp[X]; we first show that these polynomials
are pairwise distinct. In fact, the linear polynomials X−1, X−2, . . . , X−`′ are
distinct primes in Fp[X] since `′ < p since none of the numbers 2, 3, . . . , `′ < `
divide n by step 3 of the algorithm. Since Fp[X] is factorial, the polynomials∏`′

a=1(X − a)e are pairwise distinct.
We need another little observation: if g has the form above, then g(η)m =

g(ηm) for each m = pinj . In fact, g(X)m ≡ g(Xm) mod (Xr − 1, p); since η is
a root of Xr − 1, plugging in η gives g(η)m = g(ηm) in Fq = Fp(η).

Now we need to show that for different polynomials g1 6= g2 of the form
above, we also have g1(η) 6= g2(η). Assume therefore that g1(η) = g2(η); then
all the ηm for m = pinj are roots of the polynomial g1 − g2 ∈ Fp[X]. Since
η is a primitive r-th root of unity, the number of distinct ηm is equal to the
number of distinct residue classes of the form pinj mod r, which is just the
order t = #G of G. But deg g1,deg g2 ≤ `′ < t (in fact, `′ ≤ b2

√
t log nc+1 and

25

t ≥ ord (n mod r) ≥ 4(log n)2 + 2). This is only possible if g1− g2 = 0, and this
contradiction finally proves our claim.

It remains to show that the algorithm runs in polynomial time.
Step 1 can be done in polynomial time: for testing whether n = ab for a, b ≥ 2

it is sufficient to test all possible b ≤ log n (this follows from log n = b log a ≥ b).
Extracting roots is easy: just test whether the nearest integer a to n1/b satisfies
ab = n.

In step 2 we need to find some r with the property that the order of n mod r
is at least 4(log n)2 + 2. Since the size of ` depends on r, we must now show
that we can always find a sufficiently small r. To this end we prove

Lemma 4.16. We have lcm (k + 1, k + 2, . . . , 2k + 1) ≥ 22k.

Proof. Since x(1− x) ≤ 1
4 in the interval [0, 1], we have

2−2k ≥
∫ 1

0

[x(1− x)]kdx

=
k∑

i=0

(
k

i

) ∫ 1

0

(−1)ixk+idx

=
k∑

i=0

Mi

k + i + 1
=

M

L
,

where the Mi are integers, and where L = lcm (k + 1, k + 2, . . . , 2k + 1). Since
the integral on the left is clearly positive, it is ≥ 1

L . This implies L ≤ 22k.

In particular, we have lcm (1, 2, . . . , 2k + 1) ≥ 22k.
Now assume that all r ≤ R do not divide n and satisfy ord (n mod r) ≤ T :=

4(log n)2 + 2. Then ni ≡ 1 mod r for some i ≤ T , hence each r ≤ R divides

T∏
i=0

(ni − 1) ≤ nT 2
.

In particular, lcm (1, 2, . . . , R) divides this product, hence is ≤ nT 2
. This shows

that R ≤ T 2 log n + 1.
Thus if R is bigger than that, then not every r ≤ R can have order ≤ T , i.e.,

there is an integer r ≤ T 2 log n + 2 = O((log n)5) with ord (n mod r) > T .
If we test each r below this bound by computing the first 4(log n)2+2 powers

of n mod r, we need at most O((log n)9) bit operations.
Computing the gcd of r numbers takes at most O(r(log n)2) = O((log n)7)

bit operations.
The proof that step 4 can be performed in polynomial time is left as an

exercise.

Remark. If n is composite, the AKS test will declare n to be composite almost
immediately; if n is prime, however, it takes so long that it is currently not prac-
tical as a primality test. The tests that are used in practice are the cyclotomic

26

test (going back to Adleman et al., who used higher reciprocity laws, and was
transformed into a test with Gauss and Jacobi sums; you need a fair amoung
of algebraic number theory to understand this test) and ECPP (elliptic curve
primality proving; here you need to understand the basics of the arithmetic of
elliptic curves).

Exercises

4.1 Let p and q be distinct odd primes, and let n = pq. Let a be an integer such
that a ≡ 1 mod p and a ≡ −1 mod q. Which of the tests of Fermat, Euler, and
Miller-Rabin does n pass with respect to the base a?

4.2 Show that 27 − 1 = 127 using the Lucas-Lehmer test.

4.3 Apply the AKS test to n = 31 and n = 143.

4.4 Show that if n is composite and passes the Fermat test for base 2, then N = 2n−1
is composite and passes the Miller-Rabin test for base 2.

4.5 Write a pari program that determines the three smallest composite integers n
that pass a Fermat test with base a = 2.

27

Chapter 5

Factorization Algorithms

In this chapter we will discuss various algorithms for finding factors of integers.

5.1 Factoring in the Dark Ages

The simplest factoring algorithm is

Trial Division

This is based on the fact that composite numbers n have at least one prime
factor ≤

√
n. Thus for finding a factor of n, compute n = aq + r for a = 2, 3,

5, 7, 9, . . . until you find a zero remainder. In the worst case (for example when
n = p2 is a square of a prime), this takes approximately 1

2

√
n divisions with

remainder, so is far from being polynomial.
Trial Division is, however, an important technique for clearing integers n

from small prime factors. Here is a simple trick for speeding it up: after the
divisions by 2 and 3, do the following:

set s = 2; p = 5
test whether n is divisible by p;
put p = p+s; s=6-s; and repeat until p > sqrt(n)

This sieves out the multiples of 3. But even if you could sieve out all the
composite numbers and divide only by the primes ≤

√
n, you would need ap-

proximately
√

n/ log
√

n = 1
2

n1/2

log n divisions with remainder. Since a division
costs about O(log n) bit operations, we cannot go below O(n1/2) bit operations.

In order to become familiar with programming in pari, here’s how to trans-
late the above algorithm into a pari program. We assume for simplicity that n
is a composite number with gcd(n, 6) = 1.

{t=0;s=2;p=5; while(1-t,r=Mod(n,p);
if(r,,t=1;print(p));p=p+s;s=6-s)}

28

Here t = 0 until a factor is found, when t = 1. As long as t = 0, we trial
divide n by the odd numbers ≥ 5 coprime to 3.

Fermat Factorization

Fermat’s idea was to write the number n to be factored as a difference of squares:
from n = y2 − y2 = (x− y)(x + y) we can read off a factorization of n, and this
will be a nontrivial factorization unless x− y = 1.

If n = pq is odd, then p = x−y and q = x+y leads to x = q+p
2 and y = q−p

2 ;
this explains why the method works. These equalities also show that x ≤ n,
and that x ≈ n if one of the prime factors p or q is rather small). So here’s what
you do:

1. put w = b
√

Nc and x = w

2. compute y = b
√

x2 − nc

3. if n = x2 − y2, print x− y and x + y

4. if x < n, replace it by x + 1 and goto step 2.

Since we assume that n has been shown composite using a primality test, Fer-
mat’s method will actually find a factor eventually. The number of steps that
have to be performed is at worst n−

√
n = O(n), which is even worse than trial

division (using a few simple ideas, however, the test can be improved).
Nevertheless, Fermat’s method is very good at finding the factorization of

n = pq if p and q are very close to each other. If some idle RSA programmer
picks his primes with the commands

p = nextprime(random(10^150))
q = nextprime(p)

then the factorization of N = pq will take only fractions of a second. Try it!
Also observe that Fermat’s method factors n quickly if n can be factored as

n = ab with a, b ≈
√

n. If n does not have such a factorization, it might very
well be that 3n can be written as 3n = 3ab with 3a, b ≈

√
3n. Thus it is often

a good idea to try the Fermat method for various small multipliers k; if it finds
a factor, it will never be k.

Lehman’s Method

By combining trial division (search for all prime factors up to n1/3) and the
Fermat method with multipliers you can come up with a factorization method
that requires at most O(n

1
3+ε) steps for every ε > 0 (smaller ε will lead to bigger

constants involved in O; thus you cannot simply take ε = 0). Lehman’s method
was published in 1974 and was the first factorization algorithm with complexity
less than O(

√
n).

Here’s how it’s done (we assume that n ≥ 14 has been shown composite by
a primality test):

29

1. Let B = bn1/3c. Check whether n ≡ 0 mod q for q = 2, 3, 5, 7, . . . up to
B. If no factor is found, set k = 0.

2. [Loop on k] Set k ←− k + 1. Set r = 1 and m = 2 if k is even, and
r = k + n and m = 4 if k is odd.

3. [Loop on a] For all integers a satisfying 4kn ≤ a2 ≤ 4kn + B2 and a ≡
r mod m, check whether b =

√
a2 − 4kn is an integer; if it is, then gcd(a+

b, n) is a nontrivial factor of n. After all a have been tested, goto step 2.

For proving the correctness of this algorithm we need a result due to Dirich-
let:

Proposition 5.1. For any real θ ∈ R and any positive integer C there exist
integers r and 0 < s ≤ C such that |sθ − r| < 1

C .

Proof. For a real number x, let {x} = x− bxc denote its fractional part. Note
that if {x} > {y}, then {x} − {y} = {x− y}.

Now consider the numbers 0, θ, 2θ, . . . , Cθ. These are C + 1 real numbers
with 0 ≤ {tθ} < 1. Divide the interval [0, 1) into C subintervals of length 1

C .
Since there are C + 1 numbers, by Dirichlet’s box principle there exist integers
0 ≤ t, t′ ≤ C such that |{tθ} − {t′θ}| ≤ 1

C . Now put s = |t′ − t|.

Applying this with θ = p
q gives

Corollary 5.2. For any pair of integer p, q ≥ 1 and any C > 1 there exist
positive integers r, s with s < C and | rs −

p
q | <

1
sC .

We now claim that Lehman’s algorithm is correct, i.e., finds a prime factor
of n. If step 1 does not find a prime factor, then all prime factors of n are
> n1/3, hence n has at most two prime factors. Assume therefore that n = pq
for primes q ≥ p > n1/3. This implies 1 ≤ q

p < n1/3 since q
p = pq

p2 = n
p2 ≤ n1− 2

3 .
Applying Dirichlet’s Lemma with C = n1/6

√
q/p shows that there exist

integers r, s such that | rs −
p
q | <

1
sC . Multiplying through by qs shows that

|qr − ps| < qs

sC
=

q

n1/6
√

q/p
=
√

pq

n1/6
= n

1
2−

1
6 = n

1
3 .

Now put k = rs, a = ps + qr, and b = |qr − ps|; then 0 < b < n1/3, and

a2 − 4kn = p2s2 + 2pqrs + q2r2 − 4pqrs = (qr − ps)2 = b2. (5.1)

We claim first that k < n1/3: in fact we have

k = rs =
r

s
s2 <

p

q
s2 +

s

C
≤ p

q
· q
p
n1/3 + 1 = n1/3 + 1.

Next we show that 4kn ≤ a2 ≤ 4kn + n2/3. The left inequality follows trivially
from (5.1), the right one from a2 = 4kn + b2 < 4kn + n2/3.

30

Thus if n survives the first step of Lehman’s algorithm (trial division up to
n1/3), then there is a k < n1/3 and an integer a satisfying 4kn ≤ a2 ≤ 4kn+n2/3

such that a2 − 4kn = b2 is a square. This implies that a factor gcd(a + b, n) is
found for some k < n1/3.

It remains to show that gcd(a+b, n) is nontrivial. From 4kn = (a−b)(a+b)
we see that if the gcd is trivial, then n | (a − b) or n | (a + b). This is not
compatible with the fact that a+b < n. In fact, a2 ≤ 4kn+n2/3 < 4n4/3 +n2/3

implies a ≤ 2n2/3 + 1, and since b ≤ n1/3 we see that a + b ≥ n is possible only
if n ≤ 13.

5.2 Pollard’s p− 1 and ρ methods

The p− 1-method

Let us start with explaining the p − 1-method. Let n be a composite integer,
pick a base a with gcd(a, n) = 1 and an integer B (for example B = 105; in
practice, it can be as large as 1010). Then set

k =
∏

qe, (5.2)

where the product is over all primes q, and e is chosen maximal with qe < B.
So for B = 10, we would have k = 23 · 32 · 5 · 7.

Now compute gcd(ak − 1, n) in the following way:

1. Fix a, B, and set k = 1 and q = 2.

2. Find e with qe ≤ B < qe+1.

3. Set a←− aqe

mod n and find gcd(a− 1, n).

4. If the gcd is 1, replace q by the next prime; if q < B, goto step 2, otherwise
stop.

If no factor is found, one can increase B (multiply it by 10, say), and continue.
The idea behind these computations is easy to explain. Assume p is a prime

factor of n. If the prime factors of p− 1 are all less than B, then there’s a good
chance that p−1 is a divisor of the number k in (5.2). In this case, k = (p−1)m
for some integer m, hence ak = a(p−1)r ≡ 1 mod p, hence gcd(ak − 1, n) will be
divisible by p. Thus the p− 1-method finds prime factors of n with the propery
that p − 1 only has small prime factors. The running time obviously depends
on the size of the largest prime factor of p− 1, and not on n.

The largest prime factor ever found with the p − 1-method is the 66-digit
number

p = 672038771836751227845696565342450315062141551559473564642434674541

dividing 960119 − 1, with the factorization

p− 1 = 22 · 3 · 5 · 7 · 17 · 23 · 31 · 163 · 401 · 617 · 4271 · 13681 · 22877 · 43397
· 203459 · 1396027 · 6995393 · 13456591 · 2110402817.

31

It was found by T. Nohara on June 29, 2006. Actually, he was quite lucky; the
next largest prime has “only” 58 digits.

The moral of the story is: when you create primes p, q for your RSA-key,
make sure that p − 1 and q − 1 have at least one big prime factor (> 1030, for
example).

For sufficiently small exponents k, you can use the following one-line com-
mand in pari to find factors of integers n with the p− 1-method:

n=13231;k=10;x=lift(Mod(2,n)^(k!));print(gcd(x-1,n))

To see how fast this works, try to factor 267 − 1 with this method using
k = 1000, 2000, 3000, . . . ; this factorization was presented by Cole in a lecture in
1903: he said that he had used “three years of Sundays” to find the factorization.

Pollard’s ρ method

This method is based on the birthday paradox, which is about the surprising
fact that the probability that among 23 randomly chosen people there are at
least two with the same birthday is > 1

2 .
More generally, assume you pick n numbers from a set of cardinality q. What

is the probability that you pick the same number twice? Let us compute the
probability that this does not happen. The probability that the second number
is different from the first is 1 − 1

q ; the probability that the third number is
different from the first and the second is 1− 2

q ; finally, the probability that the
n-th number is different from the first n − 1 numbers is 1 − n−1

q . Thus the
probability that all numbers are pairwise distinct is

P =
(
1− 1

q

)(
1− 2

q

)
· · ·

(
1− n− 1

q

)
=

n−1∏
i=1

(
1− i

q

)
≤

n−1∏
i=1

e−i/q since 1 + x ≤ ex

= exp
(
− n(n− 1)

2q

)
.

Thus the probability that all n numbers are pairwise distinct is ≈ e−n2/2q.
If we want to make this probability < ε, then we have to choose n >

√
−2q log ε.

Now consider a random map f : S −→ S from a set S of cardinality q to
itself. For a random s ∈ S, compute f0(s) = s, f1(s) = f(s), f2(s) = f(f(s))
etc. Since there are only finitely many elements in S, there must be j < k such
that fj(s) = fk(s), and therefore fj+1(s) = fk+1(s) etc. The analysis of the
birthday paradox shows that this should happen with probability > 0.999, say,
for some index k = O(

√
q).

32

Now assume you have a composite number n, and let p denote its small-
est prime factor. Compute the numbers fj(s) for some randomly chosen s ∈
(Z/nZ)×. Then we expect a cycle after O(

√
n) steps. On the other hand, we

expect that fj(s) ≡ fk(s) mod p after about O(
√

p) steps. Thus to find p we
only have to compute the fi(s) mod n and check gcd(fk(s)− fj(s), n).

There is, however, a problem with the “only” in the last sentence. We know
0 ≤ i < j ≤ c

√
p for some constant c, hence there are about c2p gcd’s to check:

for reasonable values of c, this is worse than trial division!
The way out of this problem is called Floyd’s cycle-finding method. Let

l = j − i denote the length of the cycle; then fm(s) ≡ fm+l(s) ≡ fm+2l(s) ≡
. . . mod p for all m ≥ i. Now let m = ldi/le be the smallest multiple of l greater
than the length of the tail i: then fm(s) ≡ f2m(s) mod p since 2m−m = m > i
is a multiple of l. Moreover, m ≤ j = O(

√
p,).

This shows that we can recover p by computing the gcd of the numbers fm(s)
and f2m(s) for an index m of order O(

√
p).

The last problem is finding a suitable random function f : Z/nZ −→ Z/nZ.
Linear functions f(s) = as + b for constants a, b ∈ Z/nZ do not work: for most
choices of a and b, the cycles mod p have length considerably greater than

√
p.

It is an experimental fact that functions f(s) = s2 − a for a 6= 0, 2 seem to
behave sufficiently random.

Here’s a simple pari program that illustrates Pollard’s rho method:

{s=2;a=1;x=Mod(s,n);y=x;f=1;i=0;
while(f,i=i+1;x=x^2+a;y=y^2+a;y=y^2+a;
p=gcd(lift(y-x),n);if(p-1,print(i," ",p);f=0,))}

5.3 Modern Methods

There are quite a few factorization algorithms we have not discussed:

1. The p + 1-method, which is an analog of Pollard’s p − 1-method, but is
based on the group F×p2/F×p of order p+1 instead of the group F×p of order
p− 1. This method does not produce factorizations as spectacular as the
p−1-method since it’s steps take about 3 times as many operations as the
steps in the p− 1-method.

2. Lenstra’s elliptic curve method ECM is another analog of the p−1-method,
this time based on the group of points on an elliptic curve with coordinates
in Fp. ECM is more powerful than the p − 1-method since varying the
elliptic curve will produce lots of different groups; in the p−1-method, we
only have (Z/pZ)× to work with.

3. Shanks’ SQUFOF (square form factorization) is based on the theory of
quadratic forms; the underlying group is the class group of forms of dis-
criminant −n or −4n. It is extremely efficient for integers of about 20
digits, but becomes hopelessly slow for larger integers.

33

4. Brillhart’s continued fraction method CFRAC. This method attemtps to
find integers x, y with x2 − y2 ≡ 0 mod n by computing the continued
fraction of

√
n. If such a pair is found, gcd(x − y, n) will be a (possibly

trivial) factor of n. Thus we can factor n if we can find sufficiently many
such pairs.

5. The quadratic sieve by Pomerance: instead of constructing solutions of
x2 − y2 ≡ 0 mod n using continued fractions, Pomerance computes e.g.
xa ≡ (r + a)2 mod n for integers r = b

√
nc and small a > 0; factoring

the xa and combining relations eventually produces enough relations x2 ≡
y2 mod n to factor n.

6. The fastest factorization method known so far for large integers is Pollard’s
number field sieve. As CFRAC and the quadratic sieve, this method finds
solutions of x2 − y2 ≡ 0 mod n, this time by doing calculations in rings of
integers of algebraic number fields.

We will come back to a few of these later. For now we just observe that we are
very far from having a polynomial time factorization method, which means that
factorization probably will remain difficult for quite some time.

Exercises

5.1 Use Fermat’s method to find the factorization of n = 15251

5.2 Some factorization methods can be improved if it is known that the factors of
n have a special form. For example, if p is an odd prime, then each divisor of
the Mersenne number Mp = 2p − 1 has the form 2kp + 1 for some k. Use this
improvement to factor M11 with trial division.

5.3 Assume that n = pq for integers p = 2km + 1 and q = 2lm + 1.

1. Show that n + 1 = 4klm2 + p + q.

2. Show that this implies p+q
2
≡ n+1

2
mod 2m2.

3. Show that n = x2 − y2 for x = p+q
2

and y = p−q
2

.

4. Show that x ≡ n+1
2

mod 2m2.

Explain how to use this observation to improve Fermat’s method.

5.4 Use the results of the preceding exercise to factor n = 1022+1
89·101 .

5.5 Show that, in Lehman’s algorithm, we have

2
√

kn ≤ a ≤ 2
√

kn +
n1/6

4
√

k
.

34

5.6 Show that, in Lehman’s algorithm, the number of iterations in the loops on k

and a is at most
PB

i=1
n1/6

4
√

k
, and that this is O(n1/3).

5.7 In Lehman’s algorithm, prove the congruences a ≡ 1 mod 2 if k is even (you will
need to assume that gcd(r, s) = 1), and that a ≡ k + n mod 4 if k is odd.

5.8 Show that n = 56897193526942024370326972321 is a strong pseudoprime (i.e.,
passes Miller-Rabin) for a = p for all primes p ≤ 29.

Show that the primality tests reveal different square roots of −1 mod n; show
how you can use this information to factor n.

Also use Fermat’s method with multiplier k = 3 to factor the number. What do
you observe?

5.9 Consider the integer n = 10007030021. Write a little pari program and apply
Pollard’s rho method with various functions f(x) = x2 + a and starting values c,
and count how many iterations it takes to find the factorization.

35

Chapter 6

The Security of RSA

We have seen that finding large primes p and q with, say, 150 to 200 digits is
relatively easy, but that factoring their product n = pq is extremely difficult.
This shows that breaking RSA by factoring n is impossible.

In this chapter we will look at other possibilities of breaking RSA.

6.1 Breaking RSA

Assume that n = pq is a product of two odd primes, and that e is an integer co-
prime to φ(n). It is not known whether breaking RSA is equivalent to factoring
the integer n; what we do know, however, is that knowledge of the decryption
exponent d allows you to factor n:

Proposition 6.1. From n, d and e we can efficiently compute the factorization
of n.

Proof. We have de − 1 = s(p − 1)(q − 1) for some integer s. Pick an integer
r coprime to n; then red−1 ≡ 1 mod n. Now set x ≡ r(de−1)/2 mod n; then
x2 ≡ 1 mod n, and gcd(x−1, n) will be a nontrivial factor of n if x 6= ±1 mod n.
If x ≡ −1 mod n, we pick a different r and start all over. If x ≡ 1 mod n, we
set y ≡ r(de−1)/4 mod n and check whether gcd(y − 1, n) = 1 or not. If the gcd
is trivial, then y ≡ ±1 mod n. If y ≡ −1 mod n, pick a new r; if y ≡ 1 mod n,
set z ≡ r(de−1)/8 mod n etc.

This algorithm is a Las-Vegas algorithm: it does not necessarily terminate,
but when it does, it gives you a correct answer. What can we say about the
probability that gcd(x−1, n) is trivial? Since n is an RSA-key, we know that n =
pq for primes p and q. If x2 ≡ 1 mod n, then x2 ≡ 1 mod p and x2 ≡ 1 mod q;
but p and q are primes, so this implies x ≡ ±1 mod p and x ≡ ±1 mod q. Thus
x is the solution of one out of four systems of linear congruences. Here are the

36

possibilities:

x ≡ +1 mod p x ≡ +1 mod q, gcd(x− 1, n) = pq

x ≡ +1 mod p x ≡ −1 mod q, gcd(x− 1, n) = p

x ≡ −1 mod p x ≡ +1 mod q, gcd(x− 1, n) = q

x ≡ −1 mod p x ≡ −1 mod q, gcd(x− 1, n) = 1

Thus the gcd is trivial in 50% of all cases.
Here’s an example. Take p = 72643, q = 32603, and n = 2368379729. We

pick the encryption exponent e = 1720260823 and find d = 1197334939.
Now pari shows that 2(de−1)/2 ≡ 1 mod n and 2(de−1)/4 ≡ −1 mod n. Thus

we try r = 3 next and find 3(de−1)/2 ≡ 1 mod n and 3(de−1)/4 ≡ 1759486102 mod
n. Now we get gcd(1759486101, n) = 32603.

Our next result shows that everybody who knows φ(n) can also factor n:

Proposition 6.2. If n is a product of two odd primes, then p and q can be
efficiently computed from φ(n).

Proof. Let Φ = φ(n) = (p− 1)(q − 1); then Φ = n− (p + q) + 1. Thus we know
pq = n and s = p + q = n − Φ + 1. Now consider the quadratic polynomial
X2 − sX + n = (X − p)(X − q). Using the quadratic formula, we can compute
its roots p and q via p = 1

2 (s +
√

s2 − 4n) and q = 1
2 (s−

√
s2 − 4n).

6.2 Using a Shared Modulus

Assume that a list of users want to use RSA to set up a secure communication
system. In such a situation one might be tempted to use one and the same
modulus N for all users, but different public encryption exponents ei. It turns
out, however, that this is not a good idea.

Assume first that one of the internal users, say user number 1, is the bad
guy. In this case, the user knows the decryption e xponent d1, and therefore he
can compute the factorization N = pq and decrypt all messages sent to other
users.

Now assume that the attacker Eve comes from the outside. If Alice sends
the same message m to two users with public keys (N, e1) and (N, e2), then
Eve knows c1 ≡ me1 mod N and c2 ≡ me2 mod N If gcd(e1, e2) = 1, then Eve
computes integers t1 ≡ e−1

1 mod e2 and sets t2 = t1e1−1
e2

. Then she can compute
the message m via

ct1
1 c−t2

2 ≡ me1t1m−e2t2

≡ m1+e2t2m−e2t2 = m mod N.

6.3 Other Attacks

• Wiener has described an attack on RSA that works if N = pq with p <
q < 2p and d < 1

3N1/4. His idea uses continued fractions. This is another

37

reason why small decryption exponents should be avoided. Apparently
there are also attacks against systems that use the Chinese Remainder
Theorem to decrypt ciphertexts.

• Timing attacks. This is from wikipedia:

Kocher described a new attack on RSA in 1995: if the attacker
Eve knows Alice’s hardware in sufficient detail and is able to
measure the decryption times for several known ciphertexts, she
can deduce the decryption key d quickly. This attack can also be
applied against the RSA signature scheme. In 2003, Boneh and
Brumley demonstrated a more practical attack capable of recov-
ering RSA factorizations over a network connection (e.g., from
a Secure Socket Layer (SSL)-enabled webserver). This attack
takes advantage of information leaked by the Chinese remain-
der theorem optimization used by many RSA implementations.

There are lots of attacks on the RSA cryptosystem that have been studied in
the past 30 years. So far, every possible attack can be eliminated by a careful
implementation and a clever choice of public and private keys.

Exercises

6.1 How can Eve break the RSA cryptosystem with shared modulus if d = gcd(e1, e2) >
1?

6.2 Assume that Alice uses the shared modulus N = 18923 and the encryption
exponents e1 = 11 and e2 = 5. Suppose Alice encrypts the same message m
twice, as c1 = 1514 and c2 = 8189. Show how to compute the plaintext m.

38

Chapter 7

Discrete Logarithms

7.1 Cryptographic Tasks

The purpose of cryptography is not just encrypting messages for secure trans-
mission; for tasks such as online banking, a lot more problems will have to be
solved.

• Encryption: this is what we have seen so far; an encryption algorithm
transforms the plaintext into a ciphertext that only the receiver can de-
crypt.

• Authentication: there are two kinds of authentication protocols; first there
should be methods that allow you to sign a message in order to guarantee
that no one can modify it on its way to the receiver; in addition, it must
be possible to add a signature to a message that makes clear that the
message comes from you and not from someone else.

• key distribution: before communicating over an insecure channel, keys
have to be distributed among the participants. In the simplest case, two
users will have to agree on a common key (this task is called key exchange).

• zero knowledge protocols: here a user has to convince another that he
knows some “secret” without revealing any information that would allow
the other user to learn this secret. This is perhaps best explained by an
example: assume Alice has a composite integer n = pq as part of her public
RSA key. Bob wants Alice to prove that she knows the factorization, but
of course Alice cannot reveal the factors.

7.2 Diffie-Hellman Key Exchange

Let p be a large prime number. We know that the group (Z/pZ)× is cyclic (it
is the multiplicative group of the finite field Z/pZ = Fp). A generator g (more

39

precisely, it is the residue class g + pZ that generates the group) of this group is
called a primitive root modulo p; it is known that there are φ(p − 1) primitive
roots mod p.

In the Diffie-Hellman key exchange protocol, two users Alice and Bob agree
on a large integer (to be used as a private key in a communication), a common
key, and they do this in such a way that this number remains unknown to
someone who watches their communication.

Alice Eve Bob

Alice and Bob agree upon a prime p and a primitive root g mod p

Alice picks a random a ∈ (Z/pZ)× Bob picks a random b ∈ (Z/pZ)×

Alice computes A ≡ ga mod p Bob computes B ≡ gb mod p

Alice sends A to Bob
A−→
B←− Bob sends B to Alice

Alice computes K ≡ Ba mod p Bob computes K ≡ Ab mod p

Figure 7.1: The Diffie-Hellman key exchange

Here’s what they do: they pick a large prime number p and a primitive
root g modulo p (by definition, the powers of g mod p generate the whole group
(Z/pZ)×; for example, 3 is a primitive root modulo 7, but 2 is not). The numbers
p and g are public. Then Alice picks a random number a from {0, 1, . . . , p− 2}
(of course, the choices a = 0 or a = 1 will be catastrophic, but this happens
with probability ≈ 1

p , that is, never at all), and Bob similarly chooses some
number b from the same interval; the numbers a and b are kept secret.

Now Alice computes A ≡ ga mod p and sends A to Bob; Bob computes
B ≡ gb mod p and sends B to Alice. Then Alice computes K ≡ Ba mod p, and
Bob K ≡ Ab mod p; the common key then is K ≡ gab mod p.

If Eve was eavesdropping, she knows p, g, A ≡ ga mod p and B ≡ gb mod p.
If she could solve the discrete logarithm problem (DLP), that is, compute the
exponent a from the knowledge of p, g and ga mod p, then she could easily
compute K. As of today, no fast way of solving this problem is known, except
in special cases, such as for primes p such that p− 1 is divisible by small primes
only. It is also unknown whether computing gab mod p from g, ga mod p and
gb mod p is as hard as solving the DLP, in other words, whether there is a faster
method of computing gab mod p from these data than solving the DLP.

Attacks on Diffie-Hellman

Assume that Alice and Bob have agreed on a prime p and a primitive root g
mod p, and that Eve can intercept their messages. Eve writes p = rq + 1 for
some small r; when Alice and Bob send their values of A and B to each other,

40

Eve replaces them with Aq mod p and Bq mod p. Then the shared key will be
k ≡ gabq mod p. But since kr ≡ 1 mod p, the shared key is one out of r solutions
of the congruence kr ≡ 1 mod p. Thus Eve computes them all by testing gq,
g2q, . . . , g(r−1)q mod p.

7.3 Solving the DLP

There are various methods for solving the DLP, just as there are various methods
for factoring composite integers. Here we will briefly discuss a few of them.

In the following, assume that G is a finite cyclic group of order n, and with
generator g. Given an element a ∈ G, the DLP is to compute an integer x (or
rather, a residue class x mod n) such that

a = gx. (7.1)

Enumeration

The simplest method, comparable to trial division for factoring, is called “enu-
meration”. We simply test whether x = 0, 1, 2, . . . , n − 1 satisfies (7.1). This
clearly requires O(n) steps, and each step consists of a multiplication in G. This
is clearly not efficient if n = #G is sufficiently large.

Consider e.g. G = (Z/17Z)×, a cyclic group of order 16 with generator
g = 3. Assume we have to solve 8 ≡ 3x mod 17. Then we compute

x 0 1 2 3 4 5 6 7 8 9 10
gx 1 3 9 10 13 5 15 11 16 14 8

Thus x = 10 solves this DLP.

Shanks BSGS

Shanks developed his baby-step giant-step algorithm in connection with com-
puting the class group of quadratic forms, but it turned out that this method
can be applied to calculations in quite general groups.

Here’s the basic idea: choose m = d
√

ne and write x = qm + r; the bsgs
algorithm computes q and r in the following way. From gqm+r = a we get
gqm = ag−r. Now we compute the baby-steps

B = {(ag−r, r) : 0 ≤ r < m}.

If B contains an element of the form (1, r), then we put x = r; if not, compute
d = gm and test for q = 1, 2, 3, . . . whether the group element dq (these are called
the giant steps) is the first component of an element in B. If (δq, r) is such a
pair, then ag−r = dq = gqm, and we have solved the DLP since a = gqm+r.

We now claim that there is a suitable q < m; this means that the bsgs
algorithm requires O(m) = O(

√
#G) steps, which is a lot better than in the

enumeration algorithm (on the other hand, we have to store the elements in

41

B, and these are O(
√

#G) elements). In fact, this follows from the trivial
observation that x = qm + r < n, hence qm < n and thus finally q < n

m < m.
Here’s an example; for solving 8 ≡ 3x mod 17, we put m = 5 and compute

the baby steps

B = {(8, 0), (14, 1), (16, 2), (11, 3), (15, 4)}.

Now put d = g5 ≡ 5 mod 17 and compute the giant steps 51 ≡ 5 mod 17,
52 ≡ 8 mod 17; here we have a match: 8 ≡ 52 ≡ (35)2 ≡ 310 mod 17. Of
course, this baby example it not big enough to show the superiority of the bsgs
algorithm.

Pollard’s ρ algorithm

Pollard’s idea for finding small prime factors of integers can also be adapted to
solve the DLP a = gx. To see how, we partition G into three disjoint subgroups
G = G1 ∪G2 ∪G3 and define a “random”function f : G −→ G by

f(b) =

gb if b ∈ G1,

b2 if b ∈ G2,

ab if b ∈ G3.

Then we choose a random element x0 ∈ {1, 2, . . . , n} and compute a sequence
of group elements b0 = gx0 , b1 = f(b0), b2 = f(b1) etc.

All these elements can be written in the form

bi = gxiayi .

This is clear for i = 0, where x0 is given and y0 = 0, and follows by induction
on i; in fact, we easily see that

xi+1 ≡

xi + 1 mod n if bi ∈ G1,

2xi mod n if bi ∈ G2,

xi mod n if bi ∈ G3,

and

yi+1 ≡

yi mod n if bi ∈ G1,

2yi mod n if bi ∈ G2,

yi + 1 mod n if bi ∈ G3,

Since G has finitely many elements, we eventually must find a match bj = bi for
some j = i + k. Then

gxiayi = gxj ayj ,

that is,
gxi−xj = ayj−yi .

42

Since every element can be written in the form gx for some unique x mod n,
and because a = gx, this implies

xi − xj ≡ x(yj − yi) mod n.

If d = gcd(yj − yi, n) = 1, this congruence allows us to compute x. If d is small,
we can determine x mod n

d and test the finitely many possibilities for x. If d is
large, we rerun the algorithm with a different choice of x0.

By the birthday paradox, we expect a match after about O(
√

#G) steps
(how much the individual steps cost depends of course on the cost for multiplying
two group elements). On the other hand, we must so far store all the triplets
(bi, xi, yi), and their cardinality is about O(

√
#G). By using Floyd’s cycle

finding method, however, we get an algorithm in which we only need to store
one triple at a time: if (bi, xi, yi) is stored, compute triples for i+1, . . . , j until
a match with indices i, j is found; at j = 2i, store (b2i, x2i, y2ii) etc. There are
also variants in which two, four, or eight triplets are stored.

Here are the calculations for solving 8 ≡ 3x mod 17. First we pick G1 =
{1, 2, . . . , 6}, G2 = {7, . . . , 12} and G3 = {13, . . . , 17}. Pick x0 = 2; then we
find

i bi xi yi

0 9 2 0
1 13 4 0
2 2 4 1
3 6 5 1
4 1 6 1
5 3 7 1
6 9 8 1

Here we find the match; solving 2 − 8 ≡ x(1 − 0) mod 16 gives x ≡ −6 ≡
10 mod 16. As an exercise, continue the calculation until Floyd’s cycle finding
method finds a match.

There is also a variant of Pollard’s ρ method, namely Pollard’s λ-method;
see the literature for a description.

7.4 Pohlig-Hellman

The DLP in a finite group G is used in cryptography for a wide variety of
groups. Not every group can be used, though: clearly the DLP in the cyclic
group G = Z/nZ is trivial, since a congruence gx ≡ a mod n, given g, n and a,
can easily be solved using the Euclidean algorithm. There are, however, a lot
of groups for which

1. the DLP is hard;

2. the group operation can be computed efficiently.

Examples are the multiplicative groups of finite fields (or subgroups of these),
or the groups of points on elliptic curves over finite fields.

43

For understanding the security issues in these examples it is important to
know about possible ways of solving the DLP. The method of Pohlig-Hellman
shows how to reduce the computation of the DLP in a (cyclic subgroup of a)
finite group to a similar problem where the group order is prime. We proceed
in two steps.

Reduction to prime power order

Let G be a cyclic group of order n, let g denote a generator of G, and write

n = #G =
∏

pe(p).

We would like to solve the DLP

a = gx

in G. For each prime p | n we define

np = np−e(p), gp = gnp , and ap = anp .

Then gp has order np, and we have

gx
p = ap.

Let x(p) denote a solution of this DLP; then x ≡ x(p) mod pe(p), and by invoking
the Chinese Remainder Theorem we can compute x from the individual x(p):

Lemma 7.1. In the situation above, let x be a solution of the linear system of
congruences x ≡ x(p) mod pe(p). Then a ≡ gx mod n.

Proof. We have (g−xa)np = g
−x(p)
p ap = 1 for all p | n. Thus the order of g−xa

divides np for all such p. Since the np are coprime, this order must be 1.

One possible way to compute the DLP in groups of prime power order would
be the baby-step giant-step algorithm; if #H = pe(p), this will take about pe(p)/2

steps. If n = #G has at least two prime factors, this already a lot faster than
applying the bsgs method to the full group G.

Reduction to prime order

Assume now that #G = pe is a prime power. We want to solve a = gx for x; to
this end, we write x in the form

x = x0 + x1p + x2p
2 + . . . + xe−1p

e−1

for uniquely determined integers 0 ≤ xi < p. The goal is to show that the xi

can be determined by solving a suitable DLP in some group of order p.
To this end we raise the equation a = gx to the power pe−1; then gpe−1x =

ape−1
. Since gpe−1

generates a group of order p, we can solve this and find the
residue class x0 ≡ x mod p. This gives us x0.

44

Now we proceed by induction. Assume that x0, . . . , xj have already been
determined. Then we know that

gxjpj+...+xe−1pe−1
= ag−(x0+x1p+...+xj−1pj−1) =: ai.

Raising this to the power pe−j−1 shows that(
gpe−1

)xi

= ape−1

i .

Again, gpe−1
has order p, and solving the DLP in the group of order p generated

by this element gives us xj mod p.

Analysis

How long does it take to solve the DLP using Pohlig-Hellman? We assume that
we know the prime factorization n =

∏
pe(p). Then we have to compute the

elements gp = gnp and ap = anp for all primes dividing n. This requires O(log n)
group operations. Then we compute the xj(p) using Pollard’s ρ or Shanks’ bsgs
methods, which requires O(

√
p) group operations for each p. Putting everything

together with the Chinese Remainder Theorem is done within Z/nZ and does
not require any group operation; we know it requires O((log n)2) bit operations.
Thus the number of group operations required to solve the DLP is

O
(∑

p|n

(e(p)(log n +
√

p))
)
.

This estimate is dominated by the terms
√

p. If n = #G is only divisible by
small primes, the Pohlig-Hellman method solves the DLP very efficiently. Thus
using special primes of the form 1 + k · 2n for small k and large n, for example,
belongs to the “stupid things to do”-section in cryptographic schemes based on
the difficulty of the DLP.

7.5 Index Calculus

The fastest known method for solving the DLP in the groups (Z/pZ)× (assuming
p−1 has at least one large prime factor) is the Index Calculus. Assume we have
to solve the DLP gx ≡ a mod p. We pick a bound B and determine the “factor
base” F (B), which consists of all the primes q ≤ B. We say that an integer b is
B-smooth if its prime factors are all ≤ B.

The Index Calculus proceeds in two steps:

1. Solve the DLP gx(q) ≡ q mod p for all q ∈ F (B).

2. Find an exponent y such that agy mod p is B-smooth.

Thus we can write
agy ≡

∏
q∈F (B)

qe(q) mod p.

45

But then

agy ≡
∏

q∈F (B)

qe(q) ≡
∏

q∈F (B)

gx(q)e(q) ≡ g
P

x(q)e(q) mod p,

which in turn implies

x ≡ −y +
∑

q∈F (B)

x(q)e(q) mod (p− 1).

It remains to explain how to perform the two steps above. The second step
is easy to explain: just pick a random y and check whether agy factors over the
factor base; if not, pick a new y.

Step 1 is performed similarly: we pick random exponents k and test whether
gk mod p factors over the factor base. Assume that gk ≡

∏
q qf(q,k) mod p; since

we are trying to solve gx(q) ≡ q mod p, we find gk ≡
∏

q qx(q)f(q,k) mod p, hence
k ≡

∑
q x(q)f(q, k) mod p − 1. Thus each relation gives us a congruence mod

p− 1 for x(q). If we have more congruences than primes in the factor base, we
can solve this system and compute the x(q).

Here’s an example: let us solve the DLP 57 ≡ 2x mod 67. We pick the factor
base F = {2, 3, 5} and compute a few random powers of 2; the following factor:

231 ≡ 50 ≡ 2 · 52 mod 67,

241 ≡ 50 ≡ 22 · 3 mod 67,

215 ≡ 5 ≡ 51 mod 67,

212 ≡ 9 ≡ 32 mod 67

These relations give us the congruences

x(2) + 2x(5) ≡ 31 mod 66,

2x(2) + x(3) ≡ 41 mod 66,

x(5) ≡ 15 mod 66,

2x(3) ≡ 12 mod 66

Here we are lucky in that we already have x(5) ≡ 15 mod 66; this shows that
x(2) ≡ 1 mod 66 and x(3) ≡ 39 mod 66. (In less lucky circumstances we factor
66 = 2 · 3 · 11 and solve each of the resulting systems of congruences mod 2, 3
and 11, and then apply the Chinese Remainder Theorem). Note that we now
know 21 ≡ 2 mod p, 239 ≡ 3 mod p, and 215 ≡ 5 mod p.

Now we find a 6-smooth number 57 · 2y mod 67; we easily get 57 · 22 ≡
27 ≡ 33 mod p. This shows 57 · 22 ≡ (239)3 = 2117 ≡ 251 mod p since 117 ≡
51 mod 66. But then 57 ≡ 251−2 = 249 mod p.

46

Alice Eve Bob

Alice and Bob agree upon a prime p and a primitive root g mod p

Alice picks a ∈ (Z/pZ)× at ran-
dom, and then computes A ≡
ga mod p.

Alice sends A to Bob
A−→

Bob picks b ∈ (Z/pZ)× at ran-
dom, computes B ≡ gb mod p
and encrypts his message m via
c ≡ mAb mod p

B, c
←− Bob sends B and c to Alice

Alice decrypts the message by
computing m ≡ cBp−1−a mod p

Figure 7.2: The ElGamal public key cryptosystem

7.6 Cryptosystems based on DLP

ElGamal

There is also an encryption protocol based on DLP, called ElGamal. It works
like this: Alice picks p, g, a as before, and computes A ≡ ga mod p. Her public
key is (p, g, A), her secret key is a. In order to encode messages m < p, Bob
picks some b as before, computes B ≡ gb mod p, and publishes (p, g, B); then
he computes c ≡ Abm mod p and sends c to Alice.

At this point, Alice knows B and c, as well as her secret key a. She puts
f = p− 1− a and computes

Bfc ≡ gb(p−1−a)Abm ≡ g−abgabm ≡ m mod p

since gp−1 ≡ 1 mod p.

Shamir’s no-key protocol

The following cryptosystem was described in an unpublished mansucript of
Shamir; it is also called Massey-Omura, and was first discovered by M. Williamson
but not published since he was working at the GCHQ (a British Intelligence ser-
vice) at the time.

Figure 7.3 explains the protocol, which is clearly based on the difficulty of
the discrete log problem.

The advantage of Shamir’s no-key protocol is the fact that no keys are in-
volved; the main disadvantage is that for sending one message, Alice has to send
two ciphertexts, and wait for Bob’s ciphertext to arrive.

47

Alice Eve Bob

Alice and Bob agree upon a prime p

Alice picks a pair of integers
a, a−1 with aa−1 ≡ 1 mod p− 1

Bob picks a pair b, b−1 ∈ (Z/(p−
1)Z)× with bb−1 ≡ 1 mod p− 1.

Alice computes x ≡ ma mod p
and sends x to Bob.

x−→

y
←− Bob computes y ≡ xb mod p and

sends y to Alice
Alice computes z ≡ ya−1

mod p
and sends z to Bob

z−→

Bob decrypts the message by
computing m ≡ zb−1

mod p

Figure 7.3: Shamir’s no-key protocol

Another problem is the following: assume Eve can intercept the messages
and change them. She intercepts Alice’s x ≡ ma mod p, picks integers c, c−1

with cc−1 ≡ 1 mod p− 1, and sends y1 ≡ xc mod p back to Alice, who will then
compute z1 ≡ ya−1

1 mod p and send it away; Eve intercepts this message, too,
and computes m ≡ zc−1

1 ≡ modp.

Exercises

7.1 Solve the DLP 6 ≡ 2x mod 101 using enumeration, bsgs, Pollard’s rho method,
and Pohlig-Hellman.

7.2 Show that the sequence of bi is periodic after a match has occurred.

7.3 This exercise explains why Floyd’s cycle finding method works. Let s and s + c
denote the smallest indices with bs = bs+c; then the preperiod (the tail of the ρ)
has length s, and the cycle has length c.

1. Let i = 2j be the smallest power of 2 with 2j ≥ s. Show that bi is inside
the cycle.

2. If i = 2j ≥ c, show that one of the elements bi+1, bi+2, . . . , b2i is equal to
bi.

7.4 Solve the DLP 8 ≡ 3x mod 17 using Pohlig-Hellman.

48

Chapter 8

Basic Cryptographic
Protocols

8.1 Authentication

RSA signatures

Assume that Alice and Bob each have their own RSA keys; the pairs (nA, eA)
and (nB , eB) are public, the factorizations of nA and nB , as well as the decryp-
tion exponents dA and dB are secret. Then Alice and Bob can even sign their
messages in such a way that Alice can verify whether a message she receives
really did come from Bob or from someone else.

The basic idea is the following: assume that Alice and Bob have chosen her
public keys (NA, eA) and (NB , eB) as well as her private keys dA and dB . Then
instead of sending c ≡ meA mod NA to Alice, Bob encrypts his messages twice
by computing c′ ≡ cdB mod NB .

When Alice receives c′, she first computes c ≡ (c′)eB mod NB using Bob’s
public key, and then decrypts c with her own private key. Since only Bob knows
dB , and since this knowledge was necessary for the successful encryption, Alice
concludes that the message must have come from Bob.

Unfortunately, this does not work in practice: although Alice can compute
c ≡ (c′)eB mod NB , the smallest positive integer c representing this residue
class is not necessarily the same as the one representing c ≡ meA mod NA; all
we know is that they are congruent modulo NB . If NA has 302 digits and NB

only 300, then meA mod NA will almost always be represented by an integer
> NB .

There are two solutions of this problem: instead of encrypting the messages
m themselves, we can choose to encrypt only the values h(m) for a suitably
chosen hash function h with values < min{NA, NB}. Another solution is the
following: for signing the message m, Bob computes s ≡ mdB mod NB and
then sends (m, s) to Alice. Alice then uses Bob’s public key to check that

49

m ≡ seB mod NB . Since only Bob knows dB , Alice is sure that the message
must have come from Bob; in addition, Bob later cannot deny to have sent the
message.

This protocol cannot be used for sending RSA-encrypted messages (e.g. by
computing c ≡ meA mod NA and sending (s, c)) since the message can be re-
trieved from the signature using Bob’s public key.

Alice Eve Bob

Alice and Bob agree upon a hash function h

picks two large primes pA, qA picks two large primes pB , qB

computes NA = pAqA computes NB = pBqB

picks random eA ∈ (Z/φ(NA)Z)× picks random eB ∈ (Z/φ(NB)Z)×

solves dAeA ≡ 1 mod φ(NA) solves dBeB ≡ 1 mod φ(NB)

publishes public key (NA, eA)
(N, e)
←→ publishes public key (NB , eB)

computes c ≡ meA mod NA

computes h ≡ h(m)dB mod NB

(c, h)
←− sends (c, h) to Alice

computes m ≡ cdA mod NA

computes H ≡ heB mod NB

verifies that H = h(m)

Figure 8.1: The RSA signature protocol

Hash Functions

A hash function adds some sort of “signature” to a message; a very simple hash
function would be the map sending a message m to its parity: add up the bits
of m modulo 2. In practice, hash functions h are often required to have the
following properties:

• a hash function should map a message of arbitrary lenght to a number
with a fixed number of bits;

• for any message m, the value h(m) is easy to compute;

• collision resistant: it is difficult to find two messages m,m′ with h(m) =
h(m′);

• preimage resistant: given a hash value y, it is difficult to find some m with
h(m) = y.

In practice, hash functions map messages of arbitrary bit length to values of
fixed bit length. Rivest constructed hash functions called MD4 and MD5, and
the functions SHA-0 and SHA-1 constructed later, which were based on similar
principles, produce a 160-bit digest from messages with at most 264 bits.

50

DSA

The Digital Signature Algorithm (DSA) is based on the DLP. To set up the
scheme, each user proceeds as follows:

1. Pick a random prime N of about 160 bits;

2. choose a random prime p ≡ 1 mod N with about 1000 bits;

3. choose a generator g of the cyclic subgroup of F×p of order N ;

4. choose a random x with 0 < x < N , and compute y ≡ gx mod p.

5. The secret key is x, the public key is (p, N, g, y).

For finding a suitable g, pick a random integer h and compute g = h(p−1)/N mod
p; if this is 6= 1, the element g will have order N : clearly gN ≡ hp−1 ≡ 1 mod p,
so the order of g mod p divides the prime N , and is > 1.

If Alice wants to sign a message m, she picks a hash function h with values
< N and computes H = h(m). Then she chooses a random integer k with 0 <
k < N , computes the smallest positive remainder g of gk mod p, and then sets
r ≡ g mod N . Finally, Alice finds an integer s such that sk ≡ H + xr mod N .
She then signs the message m with the pair (r, s) of integers modulo N .

When Bob receives the encrypted message, he first decrypts it by computing
m. Then he verifies Alice’s signature as follows. Bob computes the hash value
H = h(m), u ≡ s−1H mod N , v ≡ s−1r mod N , and finally g ≡ guyv mod p.
Since guyv ≡ gu+xv ≡ gk mod p, he will find that r ≡ g mod N .

Since the only known way of computing the signature (r, s) is by using x,
which can be found by solving the DLP y ≡ gx mod p, Bob concludes that the
message must have been sent by Alice.

The advantage of DSA over the RSA signature scheme is that RSA-signatures
that are about as secure as DSA-signatures are usually 3 times as long.

8.2 Zero Knowledge Proofs

FLIP stands for Fast Legendre Identification Protocol and was suggested re-
cently by Banks, Lieman & Shparlinski. Assume Alice has an RSA-modulus
n = pq and wants to convince Bob that she knows p and q (without telling him
what p and q are, of course). The protocol I will present in Fig. 8.2 is a radically
simplified version of the original one, and very close to the Fiat-Shamir protocol
that I will discuss next.

After running through the protocol, Bob will be convinced that Alice knows
a prime factor p of her n, because there is no way known for computing the bi

except the one involving p.
Moreover, Eve cannot impersonate Alice: even if she knows n, a, and the

vectors (C1, . . . , Cr) and (b1, . . . , br), this will not help her produce the bits
(b′1, . . . , b

′
s) from a new set (C ′

1, . . . , C
′
r) that Bob sends to Alice, and which Eve

intercepts.

51

In fact, we have (Ci

n

)
=

(c2
i a

bi

n

)
=

(ci

n

)2(a

n

)bi

= 1

since (a
n) = (a

p)(a
q) = (−1)2 = +1. Now for any integer C with (C

n) = +1, there
are two possibilities:

1. We have (C
p) = (C

q) = +1; then C is a square mod p and mod q, and
the Chinese Remainder Theorem shows that C is a square mod n and has
four distinct roots.

2. We have (C
p) = (C

q) = −1; then C is a nonsquare mod p, hence a nonsquare
mod n.

Determining the bit b with (C
p) = (−1)b is thus equivalent to finding out whether

C is a square mod n or not. This is yet another fundamental difficult problem in
number theory, just as factoring and solving the DLP, and there are numerous
cryptographic protocols based on it.

Alice Eve Bob
Alice picks large random
primes p, q, puts n = pq, and
randomly chooses an integer
a such that (a

p) = (a
q) = −1.

She then publishes her public
key (n, a)

(n, a)
−→

Bob picks c1, . . . , cr ∈
(Z/nZ)× and some random
vector (b1, . . . , br) ∈ Fr

2. He
computes Ci ≡ c2

i a
bi mod n.

C1, . . . , Cr
←− Bob sends C1, . . . , Cr to Al-

ice.

Alice computes (Ci/p) =
(−1)bi and sends (b1, . . . , br)
to Bob.

(b1, . . . , br)
−→ Bob verifies that Alices vector

(b1, . . . , br) coincides with his.

Figure 8.2: FLIP

Finally, this is an honest verifier zero knowledge scheme: if Bob is honest,
he learns nothing from the communication with Alice about the factorization of
n that he did not know; after all, he only gets back the bits bi that he sent to
Alice in the first place (note, however, that at the beginning of the protocol he is
given an integer a with (a

p) = (b
p) = 1, which contains a little bit of information

52

on p and q; as long as this integer is part of the public key (and is not chosen
anew in each protocol), this is not considered to be a leak of information during
the communication).

If Bob is dishonest, however, he could simply send Alice, say, the integers
2, 3, 5, 7, . . . ; then he would learn from Alice’s response the values (2

p), (3
p),

. . . , which he did not know before. So even if he cannot compute p from this
knowledge, the protocol cannot be considered to be zero knowledge in this case.

In fact it is known that the first O((log p)2) Legendre symbols (a
p) determine

p, but no one so far has been able to come up with an efficient algorithm to
compute p from these values.

Oblivious Transfer Protocol

Assume that Alice has a secret s. In an oblivious transfer protocol, Alice can
convince Bob that she knows s, but in half of the cases, Bob will be able to
learn the secret s. Fig. 8.3 explains how it works.

Alice Eve Bob
Alice picks two large primes p
and q, generates the RSA pub-
lic key (n, e), and computes c ≡
se mod n.

(e, n, c)
−→

Bob picks a random x, computes
a ≡ x2 mod n, and sends a to Al-
ice.

a←−
Alice computes the 4 square
roots of a mod n, and sends one
of them, say y, to Bob.

y
−→

Bob verifies that y2 ≡ a mod n.

Figure 8.3: Oblivious transfer protocol

If Bob receives the square roots x or n − x of a mod n, he learns nothing
about s. If, however, y2 ≡ a mod n with y 6≡ ±x mod n, then gcd(y− x, n) will
be a prime factor of n; from the prime factorization of n Bob is then able to
compute the decryption exponent d as well as the secret s ≡ cd mod n. Observe
that Bob learns the secret with probability 1

2 , and that Alice does not know
whether Bob knows about s or not. There are situations in which this outcome
is desirable (of course not if keeping s secret is important for Alice).

We already know that computing square roots modulo n = pq is at least as
difficult as factoring n; in the next section we will see that computing square

53

roots modulo primes p can be done efficiently. Since Alice knows the factoriza-
tion of n, she can compute the square roots of a mod p and a mod q, and then
combine these with the Chinese Remainder Theorem to get the four square roots
of a mod n.

In order to prevent Bob from learning the secret s, the above protocol has
to be modified: see Fig. 8.4.

Alice Eve Bob

Alice picks two large primes p
and q, generates the RSA pub-
lic key (n, e), and computes c ≡
se mod n.

(e, n, c)
−→

Alice picks a random integer a
with

√
n < a < n and computes

b ≡ a2 mod n.

Bob picks a random integer c
with

√
n < c < n, computes

d ≡ c2 mod n.

Alice sends b to Bob.
b, d
←→ Bob sends d to Alice.

Alice solves y2 ≡ bd mod n and
sends y to Bob.

y
−→

Bob verifies that y2 ≡ bd mod n.

Figure 8.4: Modified Version of the OTP

In this protocol, Alice also picks a random square b, and she does not com-
pute the square root of d (which sometimes allows Bob to factor n) but the
square root of bd. Since Bob knows a square root of d, he will be able to find
a square root of b as well. But as long as he does not know Alice’s a, this will
tell him nothing about the prime factors of n.

Note that in this protocol it is important that b and d are exchanged si-
multaneously. In fact, if Bob knows Alice’s b beforehand, he could simply send
d = b back to Alice, who would then compute a square root of bd = b2 modulo
n; with probability 1

2 this square root is 6= ±b, and Bob will be able to factor
n. (Of course Alice will get suspicious if Bob sends her the same b she sent to
him; how can Bob prevent this?)

If, on the other hand, Alice knows Bob’s d before she sends him b, then
Malice can impersonate Alice in the following way: Malice selects a random
integer r and sends Bob b = dr2. Then Bob demands to see a square root y of
bd mod n, but Malice can simply take y ≡ dr mod n.

The Fiat-Shamir Zero-knowledge Protocol

Consider the following problem: Alice knows a secret number s (some password,
for example) and needs to convince Bob that she knows s without revealing any

54

information about s. This is indeed possible; Fig. 8.5 explains how it works.

Alice Eve Bob
Alice picks two large primes p and
q, and computes n = pq and v ≡
s2 mod n. She keeps p, q and s
secret and publishes n and v.
Now Alice picks a random r ∈
(Z/nZ)×, computes x ≡ r2 mod
n, and sends x to Bob.

x−→

Bob picks a bit b ∈ {0, 1} at ran-
dom.

b←−
Alice computes y ≡ r · sb mod n.

Alice sends y to Bob.
y
−→

Bob checks that y2 ≡ x·vb mod n.

Figure 8.5: Fiat-Shamir zero-knowledge protocol

Note that y2 ≡ (rsb)2 ≡ r2vb ≡ x · vb mod n. Now assume that Malice
wants to cheat by pretending she is Alice. She does not know Alice’s secret s,
nor her primes p and q, but she knows the public n = pq and v ≡ s2 mod n. If
Malice knew in advance that Bob would send the bit b = 0, she could send x ≡
r2 mod n, and, after Bob sent back b = 0, send y ≡ r ·s0 ≡ r mod n. If, however,
she knew that Bob would send b = 1, Malice would send x ≡ r2v−b mod n and,
after Bob sent back b = 1, send y ≡ r mod n since then y2 ≡ x · vb mod n.
This shows that, with probability p = 1

2 , Malice can successfully pretend she
knows the secret s. Repeating the procedure with 20 random choices of r and
b, however, will reduce the probability of cheating to 2−20, which is less than
10−6.

8.3 Secret Sharing

Assume that Alice wants to save a password she uses e.g. for online banking
so that she can retrieve it in case she forgets it. She could give half of the
bits of the password to Bob and the other half to Cathy; but this gives them
a lot of information about the password. Here is a way of avoiding this leak
of information: let w be the password; Alice picks a random integer r < w
and sends r to Bob and w − r to Cathy. Now Alice has successfully split the
information in such a way that each piece contains no information whatsoever
about w.

It is clear how Alice has to proceed if she wants to split the password between
three (or, more generally, any n ≥ 2) people she trusts. If she has to retrieve

55

her password, however, she will need to establish a contact with all n of them.
Is there also a way of splitting the password between n trustees in such a way
that she can retrieve the password as soon as she contacts m of them, where
2 ≤ m ≤ n is a fixed integer?

The answer is yes; the protocols that allow Alice to achieve this are called
secret sharing protocols. Here are a few ideas of how to proceed.

The problem to be solved is the following: Alice has a secret w she would
like to split between n trustees in such a way that

1. every group of m trustees can recover w;

2. fewer than m trustees cannot recover any information about w.

Linear Algebra

Let w be the password. Alice introduces variables x1, . . . , xm and produces a
set of n linear equations with integral coefficients and the property that

1. all of them have x1 = w as a solution;

2. any set of m equations is linearly independent.

As soon as m trustees share their information, they solve their system of m
linear equations and recover w.

Problem: if m − 1 of them get together, they know m − 1 linear equations
for the xi; if the parameters of this protocol are chosen too small, they might
be ablo to compute a small list of possible (integral) solutions for x1 and try
them one after the other. To prevent this, Alice might pick a prime p > w and
work with equations over Fp; then any m−1 trustees will not be able to deduce
anything about w from their knowledge since any choice of x1 can be extended
to a solution of these m− 1 linearly independent equations over Fp.

Chinese Remainder

Here Alice picks a prime p > w and pairwise coprime moduli M1, . . . ,Mn > m
√

p.
Then she computes ci ≡ w mod Mi and distributes the ci and p. As soon as m
trustees get together, they can solve their system of linear congruences; since the
product of their moduli is > p, they will be able to compute w as the smallest
positive solution of this system using the Chinese Remainder Theorem.

Lagrange Interpolation

The basic idea is the following: assume Alice wants to solve the problem above
with n and m = 2. She interprets w as the slope of a line y = wx + b and gives
each trustee a point Pj on this line. Then any two can recover the slope and
determine w.

56

8.4 Online Poker

Alice and Bob want to play poker online, or on the telephone. Here we will
explain how to begin with a fair deal. The idea is the following: Bob puts each
of the 52 cards in a box, locks them, and sends them to Alice. Alice selects 10
boxes five for herself (on which she puts her own padlocks) and five for Bob.
She returns the 10 boxes to Bob, who removes his locks from all 10 of them. He
keeps the 5 unlocked boxes and takes out his cards, and sends the other 5 back
to Alice, who unlocks them and takes out her cards.

Here’s how to do this in practice. First, every card is encoded by some small
number, for example

2♠ = 0201 3♠ = 0301 . . . A♠ = 1401
2♣ = 0202 3♣ = 0302 . . . A♣ = 1402
2♦ = 0203 3♦ = 0303 . . . A♦ = 1403
2♥ = 0204 3♥ = 0304 . . . A♥ = 1404

Next, Alice and Bob agree on a large prime p. Alice selects a random integer
a coprime to p − 1 and computes aa′ ≡ 1 mod p − 1; similarly, Bob selects a
random b and solves bb′ ≡ 1 mod p− 1.

In order to lock away the cards m1, . . . , m52, Bob computes cj ≡ mb
j mod p

and sends the cj to Alice, who selects 10 cards at random, locks away 5 of them
by raising them to the a-th power mod p, and sends the 10 cards d1, . . . , d10

back to Bob. Bob computes Cj ≡ db′

j mod p; five of these cards Cj (those not
locked up by Alice) will be of the form mj : this is his hand; the other five cards
Ck will look like random numbers mod p. He sends them back to Alice, who
will unlock them using her a′.

Question: where have you seen this protocol before?

8.5 Number Theoretic Background

Quadratic Residues

We first recall the basic properties of the Legendre symbol (a
p). It is defined for

odd primes p and integers a coprime to p by(a

p

)
=

{
+1 if a ≡ x2 mod p,

−1 otherwise.

Euler’s criterium states that (a

p

)
≡ a

p−1
2 mod p.

It is now easy to check that (a
p) = (b

p) if a ≡ b mod p, and that (a
p)(b

p) =
(ab

p). The most important result about the Legendre symbol is the quadratic

57

reciprocity law (p

q

)(q

p

)
= (−1)

p−1
2

q−1
2

for distinct odd primes p and q.
If b =

∏
p is a product of primes, and if gcd(a, b) = 1, then we define the

Jacobi symbol (a

b

)
=

∏(a

p

)
.

If a ≡ x2 mod b, then (a
b) = +1; it is not true, however, that (a

b) = +1 always
implies that a is a square modulo n. The reason for this formal definition of the
Jacobi symbol is that it also satisfies the reciprocity law(a

b

)(b

a

)
= (−1)

a−1
2

b−1
2 .

Square Roots modulo p

There is an algorithm going back to Tonelli, which was improved by Shanks,
that computes square roots mod p in polynomial time:

Proposition 8.1. Let p be an odd prime, and assume that (a
p) = +1. Then the

algorithm of Tonelli-Shanks solves x2 ≡ a mod p in O((log p)4) bit operations.

Proof. The complexity of the algorithm depends on the largest power of 2 di-
viding p− 1, so the simplest case concerns primes p ≡ 3 mod 4.

Assume that p = 4m− 1 and put x = am; then x2 ≡ a2m = a
p−1
2 a ≡ (a

p)a =
a mod p, hence x is a square root of a mod p. The number of bit operations
needed is clearly bounded by O((log p)3) in this case.

The case p ≡ 5 mod 8 is slightly more tricky: assume as before that (a
p) =

+1.

1. If a(p−1)/4 ≡ 1 mod p, then x = a(p+3)/8 solves the congruence x2 ≡
a mod p.

2. If a(p−1)/4 ≡ −1 mod p, then x ≡ 2a(4a)(p−5)/8 mod p works.

This is easy to check.
Here’s the actual algorithm.

1. Write p− 1 = 2es for some odd integer s. Find a quadratic nonresidue n
modulo p (pick one integer at random and test; with probability 1

2 it will
be a nonresidue mod p; if not, repeat).

2. Initialize:

• x ≡ a
s+1
2 mod p;

• b ≡ as mod p;

• g ≡ ns mod p;

58

• r = e.

3. Find the minimal m ∈ N with b2m ≡ 1 mod p. If m = 0, return x and
terminate. If m > 0, update the variables:

• replace x by xg2r−m−1
mod p;

• replace b by bg2r−m

mod p;

• replace g by g2r−m

mod p;

• replace r by m.

Now repeat.

Why does this work at all? First observe that the element b satisfies b2r−1 ≡
a2r−1s ≡ a

p−1
2 ≡ 1 mod p, hence the order of b is a power of 2, and an m as

required in the last step does exist.
Next, the order of b decreases with each step, so eventually we must reach a

point where m = 0, i.e., where b = 1. Since we always have x2 ≡ ba mod p, we
will have found a square root x of a mod p then. Indeed, after initializing we have
x2 ≡ as+1 = asa ≡ ba mod p. In the last step, assume we have x2 ≡ ba mod p
before updating the values. Then x2

1 ≡ x2g2r−m

= bag2r−m ≡ b1a mod p, where
x1 and b1 denote the values of x and b after the update.

Finally assume that b has order 2m; we have to show that b1 has order at
most 2m−1. In fact, observe that we have b2m−1 ≡ −1 mod p; hence

b2m−1

1 = (bg2r−m

)2
m−1

= b2m−1
g2r−1

≡ (−1)2 ≡ 1 mod p.

Counting the number of bit operations is easy; the only problem is finding a
quadratic nonresidue n. The procedure above is probabilistic; trying values at
random will quickly produce such an n with very high probability.

This does not work if N = p is not prime; in fact, we have already seen that
if we had an algorithm that could extract square roots modulo N , then we could
factor N quickly.

Exercises

8.1 Compute a square root of 2 mod 41 using Tonelli-Shanks.

8.2 Consider the simple-minded secret sharing protocol introduced at the beginning
of Section 8.3.

1. How can Alice split the secret among three (or, more generally, n) trustees?

2. Assume that Alice picks a random r and sends each trustee i the numbers
(i, w − r · i). How many trustees are needed to recover w?

3. Find a way to split the secret w among n trustees in such a way that 3
trustees are needed to recover m by generalizing the idea in part 2).

59

Alice Eve Bob

Alice picks two large primes p
and q, generates the RSA pub-
lic key (n, e), and computes c ≡
se mod n.

(e, n, c)
−→

Alice picks a random integer a
with

√
n < a < n and computes

b ≡ a2 mod n.

Bob picks a random c with
√

n <
c < n, computes d ≡ c2 mod n.

Alice sends b to Bob.
b, d
←→ Bob sends d to Alice.

Bob tosses a fair coin to get a bit
B ∈ {0, 1}, and sends B to Alice.

B←−
Alice solves y2 ≡ bdB mod n and
sends y to Bob.

y
−→

Bob verifies that y2 ≡ bdB mod
n.

Figure 8.6: Zero Knowledge Version of the OTP

8.3 The following version of a modified OTP can be found in some online lecture
notes:

Examine the difference to the one we have presented, and discuss them. Is it
zero knowledge? Can Malice impersonate Alice?

8.4 Explain how Alice can verify that Bob did not cheat in the online poker game,
say by claiming that he has four aces.

60

Chapter 9

Finite Fields

Finite Fields are fields with finitely many elements. The most basic finite fields
are the fields Fp = Z/pZ with p elements, where p is a prime. In this chapter
we will construct finite fields for q = pn elements, show that there are no others,
and discuss their basic properties.

9.1 Polynomials

Since Fp is a field, the polynomial ring Fp[X] has unique factorization. It is
easy to show (using Euclid’s argument) that there are infinitely many primes.
In fact, for any given degree d ≥ 1 there is a monic irreducible polynomial of
degree d, as can be seen by counting the number of composite polynomials.

Let f ∈ Fp[X] be a monic irreducible polynomial of degree d. Then (f)
generates a maximal ideal (f) in Fp[X], hence the quotient ring Fq = Fp[X]/(f)
is a field. Its elements are residue classes modulo f , and they are represented
by polynomials of degree < d: in fact, if f(x) = xd + ldots + a1X + a0, then
xd ≡ −ad−1X

d−1−. . .−a1X−a0 mod f , hence we can reduce every polynomial
to one of degree < d by working mod f . On the other hand, the polynomials of
degree < d are pairwise distinct mod f : if not, then f divides their difference,
which is a polynomial of degree < d. The residue classes a mod f for a ∈ Fp

obviously form a subfield of Fq isomorphic to Fp.

Proposition 9.1. For every integer d ≥ 1 there is an irreducible monic polyno-
mial f ∈ Fp[X]; the quotient ring Fpd = Fp[X]/(f) is a finite field with exactly
q = pd elements, containing Fp as a subfield.

Example: to cinstruct a field with 4 elements, take the irreducible polynomial
f(X) = X2 + X + 1 ∈ F2[X]. The 4 elements of F4 then are the residue classes
0 = 0 + (f), 1 = 1 + (f), α = X + (f), and 1 + α = 1 + X + (f). Addition
is trivial; multiplication works like this: α2 = α + 1 since α2 = X2 + (f) =
X2 − f + (f) = −X − 1 + (f) = 1 + X + (f), where we have used that −1 = 1
in F2.

61

Are there finite fields with 6 elements? The answer is no:

Proposition 9.2. If Fq is a finite field with q elements, then q = pd is a power
of a prime p (the characteristic of Fq). Moreover, all fields with q elements are
isomorphic.

In order to be able to work with finite fields, we need algorithms for adding,
multiplying and dividing elements. The only problem is division. Assume that
g(x) + (f) is a nonzero element in Fq = Fp[X]/(f), where we may assume that
deg g < d. Clearly f - g; since f is irreducible, we actually have gcd(f, g) = 1,
so by Bezout there are polynomials r, s ∈ Fp[X] (which can be computed using
the Euclidean algorithm) such that fr + gs = 1. But then g(x)s(x) ≡ 1 mod f ,
hence the element s + (f) is the inverse of g + (f).

We leave it as an exercise to prove

Proposition 9.3. Two elements of Fq, where q = pd, can be multiplied or
divided in O((log q)2) bit operations; an element can be raised to the n-th power
in O(log n(log q)2) bit operations.

We also know

Proposition 9.4. The multiplicative group of a finite field is cyclic.

This provides us with a wealth of groups in which the DLP is difficult to
solve.

9.2 The Frobenius Automorphism

Consider the finite field Fp; the map a 7−→ ap is a ring homomorphism since
(a + b)p = ap + bp. In fact, the same argument shows that σ : x 7−→ xp is an
automorphism Fq −→ Fq; it is called the Frobenius automorphism.

Proposition 9.5. Let Fq/Fp be an extension of finite fields. Then the Frobenius
automorphism σ fixes the elements of Fp, and every element of Fq fixed by the
Frobenius lies in Fp.

Proof. Since every element a ∈ Fp satisfies ap = a, the Frobenius fixes every
element in Fp. Conversely, let a ∈ Fq be an element with ap = a. Then a is a
root of Xp −X; but this polynomial has at most p roots in any field, and the p
elements of Fp are roots; thus there cannot be any other roots, and a must be
one of them: a ∈ Fp.

This immediately implies

Proposition 9.6. The extension Fq/Fp, where q = pd, is a Galois extension;
its Galois group is cyclic of order d and is generated by the Frobenius automor-
phism: Gal (Fq/Fp) = {σj : 0 ≤ j < d}. In particular, the Galois group is cyclic
and isomorphic to Z/dZ.

62

Proof. For showing that Fq/Fp is Galois, we only need to show that there are
d distinct automorphisms of Fq/Fp. Clearly the σj are automorphisms. The
elements fixed by σj are exactly the roots of Xpj −X; thus σd fixes everything,
and this means that σd = 1 is the identity map.

Next assume that σr = σs; then every x ∈ Fq is a root of Xpr −Xps

, and
every nonzero x ∈ Fq is therefore a root of Xpr−ps − 1. For r, s < d this is only
possible if r = s. Thus the σj are indeed pairwise distinct, and Fq/Fp is a cyclic
extension of degree d as claimed.

We now define two important maps from Fq to Fp, namely the trace T and
the norm N , by

T (x) =
∑

σj(x) = x + xp + xp2
+ · · ·+ xpd−1

,

N(x) =
∏

σj(x) = x · xp · xp2
· · ·xpd−1

.

Proposition 9.7. The trace T is a group homomorphism from the additive
group (Fq,+) onto the additive group (Fp,+).

Proof. We only show that the trace is in Fp. To this end we have to show that
T (x) is fixed by the Frobenius. But

T (x)p = x + xp + xp2
+ · · ·+ (xpd−1

)p

= xp + xp2
+ . . . + xpd

= xp + xp2
+ . . . + x = T (x).

Proposition 9.8. The norm N is a group homomorphism from the multiplica-
tive group (F×q , ·) onto the multiplicative group (F×p , ·).

Proof. As above, we find that N(x)p = N(x), hence N(x) ∈ Fp. Moreover,
N(x) = 0 if and only if x = 0, hence the norm is a map from F×

q to F×p .
Let γ be a generator of F×q . We claim that g = N(γ) generates F×p . This

implies that the norm is surjective: for a ∈ F×p , write a = gt; then a = gt =
N(γ)t = N(γt).

Since γ has order q − 1, we find that N(γ) = γ1+p+p2+...+pd−1
= γ

q−1
p−1 has

order p− 1 as claimed.

In particular, the norm F×p2 −→ F×p must have a kernel of the order p +
1; this subgroup ker N is cyclic (because F×p2 is cyclic) and can be used to
generalise lots of results in elementary number theory (primality proofs based
on the factorization of p + 1; a p + 1-method of factoring; DLP in a group with
p + 1 elements).

63

Exercises

9.1 Show that f(X) = x2 + x + 1 is irreducible over F2 and use f to construct
the field F4. Compute addition and multiplication tables, and determine the
elements with norm 1.

9.2 Find an irreducible quadratic polynomial over F3, construct F9, find a generator
γ of F×9 , and determine all elements in the kernel of the norm map.

9.3 Find a normal basis for F4 and F9.

64

Chapter 10

Pell Conics

In the next chapter we will begin discussing the basic arithmetic of elliptic
curves. In this chapter we will present similar results for a class of curves
that is a lot simpler: Pell conics. These are curves described by an equation
P : X2 − dY 2 = 1. If R is a domain, then

P(R) = {(x, y) ∈ R×R : x2 − dy2 = 1}

denotes the set of all points (x, y) on P with coordinates in R. Our first task
will be the description of a group law on P(R). Then we will show how to
use the groups P(Fp) for primality tests, primality proofs, factoring, and for
cryptography.

In the following, p will always denote an odd prime.

10.1 Group Law and Parametrization

We now use the technique of parametrization to count the number of points on
P over Fp:

Proposition 10.1. Let p be an odd prime, consider the Pell conic P : X2 −
dY 2 = 1, and assume that p - d. Then

#P(Fp) =

{
p + 1 if (d

p) = −1,

p− 1 if (d
p) = +1.

Proof. The idea is to consider lines through P = (1, 0); these will intersect the
Pell conic in exactly two points, namely in P and another point Pm depending
on the slope m of the line.

The lines through P are given by L : Y = m(X − 1) (with one exception:
the line x = 1). For computing the points of intersection of L and P, plug
Y = m(X − 1) into the equation of P; then we find

0 = X2 − dY 2 − 1 = X2 − dm2(X − 1)2 − 1 = (X − 1)(X + 1− dm2(X − 1)).

65

The first factor corresponds to the point P , the other gives X = dm2+1
dm2−1 . Plug-

ging this into the equation for L shows that the point of intersection is

Pm =
(dm2 + 1

dm2 − 1
,

2m

dm2 − 1

)
.

Every point Q on C \ {P} with coordinates in Fp has such a representation:
simply compute the slope m of the line PQ. Conversely, every value m ∈ Fp

gives such a point, except when the denominator dm2−1 vanishes. If (d
p) = −1,

this does not happen, and then there are p points Pm plus P , hence p + 1
points overall. If (d

p) = +1, however, then there are exactly two values of m for
which dm2 − 1 = 0, hence we find p− 2 points Pm plus P , that is, p− 1 points
overall.

Next we define a group law on P(Fp) in the following way: fix the point
N = (1, 0); in order to add two distinct points P,Q ∈ C(Fp), draw a parallel
to PQ through N , and let P + Q be the second point of intersection (with
P + Q = N if the parallel is a tangent at N). In order to add P to itself, draw
a parallel to the tangent to P at P through N , and let 2P denote the second
point of intersection.

It is very easy to see that N is a neutral element with respect to this addition,
that inverses exist, and that addition is commutative. Proving associativity is
not so easy, but turns out to be a consequence of Pascal’s Theorem.

We will use algebra to prove that this addition of points defines a group law.
To this end, we first compute explicit formulas.

Theorem 10.2. Let P = (r, s) and Q = (t, u) be points on the Pell conic
P : X2 − dY 2 = 1 with neutral element N = (1, 0) over some field F . Then

P + Q = (rt + dsu, ru + st).

We will prove that the geometric group law defined above leads to these
formulas; note that we can use these formulas to define a group law on P for
any ring R (not just fields as in the theorem).

Proof. Let R = (rt + dsu, ru + st). It is sufficient to show that

1. R is on P;

2. the slope of RN is equal to the slope of PQ.

These are rather simple calculations:

1. (rt + dsu)2 − d(ru + st)2 = r2(t2 − du2)− ds2(t2 − du2) = r2 − ds2 = 1.

2. Assume first that r 6= t. We have to show that

ru + st

rt + dsu− 1
=

s− u

r − t
.

66

Clearing denominators and cancelling equal terms shows that this is equiv-
alent to

(r2 − ds2)u = s(t2 − du2)− s + u.

Plugging in r2 − ds2 = t2 − du2 = 1 then proves the claim.

Now assume that r = t. Then there are two cases:

(a) P = −Q; then r = t and s = −u), hence P + Q = N as well as
R = (r2 − ds2, 0) = (1, 0) = N .

(b) P = Q; then r = t, s = u, and we have to show that the slope
of RN equals the slope of the tangent at P . The slope of RN is

2rs
r2+ds2−1 = 2rs

2ds2 = r
ds , where we have used r2 − 1 = ds2. In order

to compute the slope of the tangent at P we take the derivative of
X2 − dY 2 = 1 with respect to X and find 2X − 2dY Y ′ = 0. Solving
for Y ′ and evaluation at (X, Y) = (r, s) shows that the slope of the
tangent at P is r

ds .

In Algebraic Geometry you will learn that you may use classical formulas
for derivatives even if you want to compute the tangent of an algebraic curve
over, say, a finite field. In the case at hand, this can be checked directly. Call
a line through P a tangent to some Pell conic P at P if the line intersects P
only in P . It is then easily checked that the only slope for which this holds is
the one predicted by calculus.

The Group Structure

We now will show that the groups P(Fp) are cyclic. There are two cases to
consider.

1. d = a2 is a square in F×p . For a point P = (r, s) on P(Fp), the identity 1 =
r2−ds2 = (r−as)(r+as) suggest substituting u = r−as, v = r+as. Then
uv = 1, hence u, v ∈ F×p . We now claim that the map φ : P(Fp) −→ F×p
defined by φ(r, s) = r − as is a homomorphism. In fact, write Q = (t, u);
then P +Q = (rt+dsu, ru+ st), hence φ(P +Q) = rt+a2su−a(ru+ ts);
on the other hand, φ(P)φ(Q) = (r−as)(t−au) = rt+a2su−a(ru+st) =
φ(P + Q).

Thus φ is a group homomorphism. We now claim that φ is surjective.
In fact, let u ∈ F×p be given; then uv = 1 for v = u−1. The equations
r − as = u and r + as = v give us r = u+v

2 and s = v−u
2a ; with P = (r, s)

we then find φ(P) = u.

Since φ is a surjective map between finite sets of the same cardinality, it
must be bijective.

67

2. d is not a square in F×p : then Fp2 = Fp(
√

d), and we can define a map
φ : P(Fp) −→ F×p2 via φ(r, s) = r + s

√
d.

We now claim that φ is a homomorphism. In fact, write Q = (t, u); then
P +Q = (rt+dsu, ru+ st), as well as φ(P)φ(Q) = (r + s

√
d)(t+u

√
d) =

rt + dsu + (ru + st)
√

d = φ(P + Q).

This time, however, the map φ is not surjective since the pair (r, s) satisfies
the condition r2−ds2 = 1. We claim that r2−ds2 = N(r+s

√
d). In fact,

let σ : x 7−→ xp denote the Frobenius automorphism; then N(x) = x · xp

for x ∈ Fp2 . We find σ(r + s
√

d) = (r + s
√

d)p = rp + sp
√

d
p

= r − s
√

d:
in fact, rp = r and sp = s since r and s lie in the base field Fp, and√

d
p

= d(p−1)/2
√

d = −
√

d by Euler’s criterium: an element d ∈ Fp is a
square if and only if d(p−1)/2 = 1.

Thus N(r+s
√

d) = (r+s
√

d)(r+s
√

d)p = (r+s
√

d)(r−s
√

d) = r2−ds2.
This shows that the image of φ lies in the kernel of the norm map F×p2 [N].

We now claim that φ : P(Fp) −→ F×p2 [N] is an isomorphism. Clearly
ker φ = {(r, s) ∈ P(Fp) : r + s

√
d = 1} = {N}, so φ is injective. Since

both groups have the same cardinality, the claim follows.

Note that the results just proved can be summarized in the exact sequence

1 −−−−→ P(Fp) −−−−→ F×p2
N−−−−→ F×p −−−−→ 1

We have shown

Theorem 10.3. Let p denote an odd prime and P : X2− dY 2 = 1 a Pell conic
over Fp with d 6= 0. Then

P(Fp) '

{
F×p if d is a square in F×p
F×p2 [N] if d is not a square in F×p .

In particular, the groups P(Fp) are subgroups of the multiplicative groups of
finite fields, hence are cyclic.

Functoriality

The formulas in Theorem 10.2 allow us to define group laws on Pell conics over
arbitrary rings. In order to be able with P(Z/nZ) we need more information
on their structure.

Let R and S be commutative rings with unit; then so is their sum R ⊕
S = {(r, s) : r ∈ R, s ∈ S}, where addition and multiplication are defined
componentwise, and where (0, 0) and (1, 1) are the zero and the unit element,
respectively. Note that even if R and S are domains, R ⊕ S has zero divisors
since (1, 0) · (0, 1) = (0, 0).

The Chinese Remainder Theorem provides us with lots of examples: for
coprime integers m,n 6= 0 it states that Z/mnZ ' Z/mZ⊕ Z/nZ.

68

What can we say about P(R⊕S)? Every element in P(R⊕S) has the form
(x, y), where x = (r1, s1) and y = (r2, s2) with r1, r2 ∈ R and s1, s2 ∈ S. The
equation x2−dy2 = 1 (where the 1 on the right hand side is nothing but the unit
element 1 = (1, 1) in R⊕ S) is actually a system of two equations r2

1 − dr2
2 = 1

and s2
1− ds2

2 = 1. Thus each point (x, y) ∈ P(R⊕S) corresponds to two points
(r1, r2) ∈ P(R) and (s1, s2) ∈ P(S). We leave it as an exercise to show that the
map φ : P(R ⊕ S) −→ P(R)⊕ P(S) is a group homomorphism. It is also easy
to see that φ is an isomorphism.

Thus we have

Theorem 10.4. For rings R,S with units and a Pell conic P : X2 − dY 2 = 1
defined over R⊕ S we have

P(R⊕ S) ' P(R)⊕ P(S).

In particular: if n = pq for distinct odd primes p and q not dividing d, then
P(Z/nZ) ' P(Z/pZ)⊕ P(Z/qZ) is a cyclic group of order (p− (d

p))(q − (d
q)).

10.2 Factorization Methods

The p + 1-Method of Factoring

Let N be a composite integer, and assume that p is a prime factor of N . Assume
moreover that we have found an integer d coprime to N with (d

p) = −1. Consider
the Pell conic P : X2 − dY 2 = 1 and pick a random point P ∈ P(Z/NZ) by
picking a random integer m coprime to N and computing P = (dm2+1

dm2−1 , 2m
dm2−1).

Note that in this calculation you need the fact that dm2−1 is invertible mod
N . If this fails, then gcd(dm2 − 1, N) must be nontrivial. Since p - (dm2 − 1)
because of (d

p) = −1, we have 1 < gcd(dm2 − 1, N) < N in this case, and thus
have found a factor of N (in practice, this does not occur, of course).

We know that the group P(Z/pZ) is cyclic of order p+1; thus (p+1)P = (1, 0)
in P(Z/pZ). This means that, as a point in P(Z/NZ), the points (p+1)P must
have the form (x, y) with x ≡ 1 mod p and y ≡ 0 mod p. This means that
we have a good chance of recovering p by simply computing gcd(x − 1, N) or,
equivalently, gcd(y, N). As in the p − 1-method, we cannot compute (p + 1)P
directly: we have to compute kP for some highly composite integer k; if k is
a multiple of p + 1, then kP = (1, 0) in P(Z/pZ), and the gcd-calculation will
very likely give us the prime factor p.

Here’s the actual algorithm:

1. Choose d, a point P ∈ P(Z/NZ), a bound B, and set k = 1 and q = 2.

2. Find e with qe ≤ B < qe+1.

3. Set P = (x, y)←− qeP and find gcd(x− 1, N).

4. If the gcd is 1, replace q by the next prime; if q < B, goto step 2, otherwise
stop.

69

If no factor is found, one can increase B (multiply it by 10, say), and continue.
The most serious problem with the p+1-method is finding a value of d with

(d
p) = −1. Since we do not know p in advance, we can only pick a random

d; with probability 1
2 we will have (d

p) = −1. If we do the calculations with
three random d, then the probability that one of them satisfies (d

p) = −1 is 7
8 .

Thus instead of running the p + 1-method once we have to run it up to three
times; since the p + 1-method is about three times as slow as the p− 1-method
(assuming we have chosen the same bound B), we find that the overall running
time is about 9 times that of the p− 1-method.

The computation of qeP is of course not done by adding P sufficiently often
to itself but by the method of duplication and addition (squaring and multiply-
ing in the multiplicative language).

Here’s a simple example: take N = 562+3 = 3139, d = −1, P = P0 = (56, 2)
and B = 10. Our first prime is q = 2, and 23 = 8 is the smallest power < 10;
we get 2P = (−7, 224), 4P = (97, 3) and P1 = 8P = (−17, 582), and since
(582, N) = 1 we continue with q = 3. Here we have to compute P2 = 9P1, and
this is done by doubling P1 three times and adding P1: 2P1 = (577,−954), 4P1 =
(389, 873), 8P1 = (1297, 1170), 9P1 = (1520, 438), and now gcd(438, N) = 73,
hence N = 73 ·43. Note that we cannot expect to find the second factor 43 with
this method and B = 10 since 43 − (−1

43) = 43 + 1 = 4 · 11 has a prime factor
larger than B. We did find 73 on the other hand since 73−(−1

73) = 73−1 = 2332

is a product of prime powers < B. In fact, P has order 9 on C(Z/73Z), so we
would have found it by simply computing 9P . Check this!

Pollard’s rho Method

We can also transfer Pollard’s rho method to Pell conics. For factoring N , pick
a Pell conic X2 − dY 2 = 1 and random points P,Q ∈ P(Z/NZ). Consider the
function f(P) = 2P + Q; if this is a random function on P(Z/NZ), then the
following algorithm will find a prime factor p of N in O(

√
p) steps:

1. Let P1 = P2 = P ;

2. P1 ←− 2P1 + Q; P2 ←− 2P2 + Q; P2 ←− 2P2 + Q;

3. If gcd(x1 − x2, N) = 1, where Pj = (xj , yj), goto 2.
If p = gcd(x1 − x2, N) > 1, print p and terminate.

10.3 Primality Tests

Fermat’s primality test was based on the observation that ap−1 ≡ 1 mod p for
primes p and integers a coprime to p. The analog here is

Proposition 10.5 (Fermat’s Little Theorem). Let P be a point on the Pell conic
P : X2 − dY 2 = 1 over Fp, and assume that (d

p) = −1. Then (p + 1)P = (1, 0).

70

Proof. The group P has p − (d
p) = p + 1 elements, so the claim follows from

Lagrange’s theorem that the order of an element divides the group order.

This can be used as a primality test: given an odd integer n, pick an integer
d with (d

n) = −1 and a random point P on P : X2 − dY 2 = 1 over Z/nZ; then
check whether (n + 1)P = (1, 0).

Note that if n is prime, then the equation 2P = (1, 0) has only two solutions,
namely (−1, 0) and (1, 0). This means that we also have an analog of the Miller-
Rabin test.

In elementary number theory we have proved various results about factors of
Fermat and Mersenne numbers. These were based pn the following observation:

Proposition 10.6. Let n be an odd integer and assume that an−1 ≡ 1 mod n,
but gcd(a

n−1
q , n) 6= 1 for some prime q | n− 1. Then every prime p | n satisfies

p ≡ 1 mod n.

Proof. The congruences show that q | ord (a mod p): otherwise we would have
a

n−1
q ≡ 1 mod p and therefore p | gcd(a

n−1
q , n). On the other hand, Fermat’s

Little Theorem tells us that ord (a mod p) | (p−1). Thus we see that q | (p−1),
and this implies the claim.

This result has an analog in our situation:

Proposition 10.7. Let n be an odd integer, P a point on the Pell conic P :
X2−dY 2 = 1 with (d

n) = −1, and assume that (n+1)P = N , but n+1
q P = (x, y)

with gcd(x−1, n) = 1 for some prime q | (n+1). Then every prime p | n satisfies
p ≡ (d

p) mod q.

Proof. As above, the point P considered as a point on P(Fp) has order divisible
by q; on the other hand, the analog of Fermat’s Little Theorem tells us that
the order of P modulo p divides p− (d

p). Thus q | p− (d
p), and this proves our

claim.

Corollary 10.8. Let P : x2− dy2 = 1 be a Pell conic, and assume that n is an
integer with (d

n) = −1. Assume moreover that n + 1 = FR with F >
√

n + 1.
Then n is prime if and only if there exists a point P ∈ P(Z/nZ) such that

i) (n + 1)P = (1, 0);

ii) n+1
q P 6= (1, 0) for each prime q | F .

Proof. Repeat the proof above with F instead of some prime q | n + 1. Then
p ≡ (d

p) mod F for all primes p | n. If n is composite, there must be a prime
p | n with p <

√
n; but then p 6≡ ±1 mod F .

In the special case of Mersenne numbers q = 2p− 1 (note that q ≡ 7 mod 12
for p ≥ 3), we have q+1

2 = 2p−1, and if we choose P : x2−3y2 = 1 and P = (2, 1),
then the test above is nothing but the Lucas-Lehmer test.

71

In fact, we have 2P = P + P = (7, 4), 4P = (97, 56), ?? 2(x, y) = (x2 +
3y2, 2xy) = (2x2 − 1, 2xy).

Consider n = 31; we find

i i ∗ P
1 (2, 1)
2 (7, 4)
4 (4, 25)
8 (0, 14)

16 (−1, 0)
32 (1, 0)

Since we only need the x-coordinates, we can simply work with the recursive
sequence x0 = 2, xn+1 = 2x2

n − 1.
The classical Lucas-Lehmer test works with S0 = 4, Sn+1 = S2

n − 2. In fact,
we have Sn = 2xn since Sn+1 = S2

n − 2 = 4x2
n − 2 = 2(x2

n − 1) = 2xn+1.

10.4 Cryptography using Pell Conics

Let us now discuss a few cryptographic protocols based on Pell conics.

RSA

Alice picks and integer D and two primes p 6= q, computes N = pq and Φ(N) =
(p − (d

p))(q − (d
q)), and picks integers d, e with de ≡ 1 mod Φ(N). Her public

key is the triple (N, e,D).

Alice Eve Bob
picks two large primes p, q
computes N = pq;
picks random e coprime to Φ(N)

publishes public key (N, e,D)
(N, e,D)
−→

uses the parametrization
of P to find the point Pm

corresponding to the m.
Bob computes C = eP

C←− Bob sends c to Alice
Alice solves de ≡ 1 mod Φ(N)
she computes Pm = dC and uses the
parametrization of P to retrieve m

Figure 10.1: The Pell analog of the RSA protocol

72

In order to encrypt a message m < N , Bob uses the parametrization of
P : X2 −DY 2 = 1 over Z/NZ to compute a point P corresponding to m. He
computes the point C = eP and sends it to Alice, who computes P = dC (in
fact: dC = deP = (1 + kΦ(N))P = P + kΦ(N)P = P + N = P) using her
private key d.

Note that this idea is useless in practice: where RSA sends one encrypted
message c about the size of N , the Pell version has to send twice as many bits
per message, without having increased security.

Diffie-Hellman

The transfer to the Pell situation is straight forward: Alice and Bob agree on
an integer d, a prime p with (d

p) = −1, and a point P that generates P(Fp),
where P : X2 − dY 2 = 1. Then they follow the protocol in Fig. 10.2.

Alice Eve Bob

Alice and Bob agree upon (d, p, P)

Alice picks a random a < p Bob picks a random b < p

Alice computes A = aP Bob computes B = bP

Alice sends A to Bob
A−→
B←− Bob sends B to Alice

Alice computes K = aB Bob computes K = bA

Figure 10.2: The Pell analog of Diffie-Hellman key exchange

After having exchanged the necessary information, both Alice and Bob know
the point K = abP ; Eve knows d, p and P , as well as aP and bP . In order
to break Diffie-Hellman, she has to solve the Diffie-Hellman problem: compute
abP from P , A = aP and B = bP . The only way known to do this is to solve
the DLP aP = A for a and then compute aB. The DLP in P(Fp), on the other
hand, is as hard as the DLP in Z/pZ, since both groups have about the same
cardinality. One has to check, however, that p + 1 (or p− 1 in the second case)
has at least one big prime factor: otherwise Pohlig-Hellman will solve the DLP.

Quadratic Residues and Nonresidues

Quite a few cryptographic protocols are based on the fact that computing square
roots mod n is as difficult as factoring n.

The analog problem for Pell conics is the following: given a point P ∈ P(Fp),
determine whether P = 2Q for some Q ∈ P(Fp), and compute Q if it exists.

How can we tell whether P = (x, y) has the form P = 2Q for Q = (r, s)?
We have 2(r, s) = (r2 + ds2, 2rs) = (2r2 + 1, 2rs), hence we find x = 2r2 + 1 as

73

a necessary condition. This in turn implies that 2(x− 1) = (2r)2 is a square, so
P = (x, y) = 2Q implies that (2(x−1)

p) = +1 if we work over Fp. Conversely, if

(2(x−1)
p) = +1, then we can solve 2(x− 1) ≡ (2r)2 mod p and s2 ≡ r2−1

d mod p.
This shows that checking the solvability of P = 2Q (and the computation of Q
if it exists) can be performed as efficiently as taking square roots mod p.

For the same reason it is difficult to check whether P = 2Q in P(Z/nZ) for
composite n when the prime factorization of n is unknown; of course (2(x−1)

n) =
1 is still a necessary condition, but it is not sufficient anymore. And even if we
know that P = 2Q, computing Q from P is as difficult as factoring.

Exercises

10.1 Find all points on the unit circle X2 + Y 2 = 1 over F3 and F5.

10.2 Let P = (2, 2) be a point on the unit circle over F7. Compute 2P , 3P , . . . ; what
is the order of P?

10.3 Show that the map φ : P(R ⊕ S) −→ P(R) ⊕ P(S) is a group homomorphism.
Also show that ker φ = (1, 0), where 1 = (1, 1) ∈ R ⊕ S and 0 = (0, 0), and that
φ is surjective.

10.4 Consider the parabola C : Y = X2 over some field R. Show that the group law
with neutral element N = (0, 0) is given by (r, r2) + (s, s2) = (r + s, (r + s)2),
and that we have C(R) ' (R, +), the additive group of R.

10.5 Construct a Pell analog of ElGamal.

10.6 Construct a Pell analog of Shamir’s no-key protocol.

10.7 Assume you have an algorithm that, given a point P ∈ P(Z/nZ) of the form
P = 2Q, can compute Q efficiently. Show how to use this algorithm for factoring
n.

10.8 Construct a Pell analog of FLIP.

10.9 The discriminant of the Pell conic C2 − dY 2 = 1 is ∆ = 4d. If we want to
construct Pell conics of discriminant ∆ ≡ 1 mod 4, we have to look at curves

P : X2 + XY −mY 2 = 1.

These have discriminant ∆ = 1 + 4m. Define a group law on P with neutral
element N = (1, 0), and show that the addition formulas can be given the form

(r, s) + (t, u) = (rt + su, ru + st + su).

Show that if (∆
p
) = −1, then the map P(Fp) −→ F×

p2 sending (a, b) ∈ P(Fp) to

a + bω ∈ F×
p2 , where ω = 1+

√
∆

2
, is an homomorphism. More exactly, show that

P(Fp) ' F×
p2 [N].

74

10.10 Consider the Pell conic P : X2 + XY − Y 2 = 1 with neutral element N = (1, 0).
Compute the multiples of P = (1, 1) and show that 2kP = (Fk−1, Fk), where Fk

is the k-th term in the Fibonacci sequence F0 = F1 = 1, Fn+1 = Fn + Fn−1.

10.11 Let p 6= 5 be a prime. Show that p | Fn for n = p− (5
p
).

75

Chapter 11

Elliptic Curves

Let F be a field (in number theory, F = Q, an algebraic number field, or a local
field; in cryptography, we usually may safely assume that F is a finite field, or
even F = Fp). A curve

E : Y 2 = X3 + aX + b

is called an elliptic curve if the polynomial f(X) = X3 + aX + b does not
have multiple roots over an algebraic closure of F . For example, the curve
Y 2 = X3 + 5 is an elliptic curve over F7, but not over F5 (where Y 2 = X3 has
a triple root). the set E(F) = {(x, y) ∈ F × F : y2 = x3 + ax + b} is called the
set of (affine) F -rational points on E.

11.1 The Group Law

The group law on conics was defined in the affine plane; for getting a group law
on elliptic curves, it is necessary to work in the projective plane.

The Projective Plane

Hasse’s Theorem

Now in order to find the best strategy for factoring numbers using the elliptic
curve method ECM, one needs to know a lot about the possible orders of elliptic
curves over finite fields. It is clear that E(Fp) is finite since there are only
p2 + p + 1 points in the projective plane P2Fp. Heuristically, we would expect a
group order in the vicinity of p + 1: for approximately half the elements of Fp

the values of f(x) = x3+ax+b should be squares, and those squares correspond
to two points (x,±y) on the elliptic curve.

The simplest method to improve the trivial bound #E(Fp) ≤ p2 + p + 1 is
due to Postnikov.

Let Fq be a finite field of characteristic p > 2, and f ∈ Fq[X] a nonzero
polynomial. In order to determine how many values of f are squares, we consider

76

the equation
f(X)(q−1)/2 − 1 = 0 (11.1)

and the polynomial

R(X) = 2f(X)(1− f(X)(q−1)/2) + f ′(X)(Xq −X). (11.2)

Clearly any root of (11.1) is a root of (11.2). Since

R′(X) = 2f ′(X)(1− f(X)(q−1)/2)

+ f ′(X)(f(X)(q−1)/2 − 1) + f ′′(X)(Xq −X),

any root of (11.1) is a double root of (11.2).
Now deg R = q+1

2 deg f , hence the number Nf of solutions of (11.1) satisfies
2Nf ≤ q+1

2 deg f .
Now R is a polynomial of degree deg R = p+1

2 deg f with at least Nf roots of
multiplicity ≥ 2 and at least δ ≤ deg f roots of multiplicity ≥ 1, where δ is the
number of roots of f in Fp. Thus the number Nf of solutions of (11.1) satisfies
2Nf + δ ≤ p+1

2 deg f .
Similarly, any root of

f(X)(p−1)/2 + 1 = 0 (11.3)

is at least a double root of

R(X) = 2f(X)(1 + f(X)(p−1)/2) + f ′(X)(Xp −X). (11.4)

If we denote the number of roots of (11.3) by Mf , then 2Mf + δ ≤ p+1
2 deg f .

Moreover, Nf + Mf + δ = p.
In the special case of a cubic polynomial f , we get 2Nf + δ − p ≤ p+3

2 and
2Mf + δ − p ≤ p+3

2 . This implies |2Nf + δ − p| ≤ p+3
2 .

Since the number of solutions of y2 = f(x) over Fp is given by 2Nf + δ, we
find

Proposition 11.1. The number N of Fp-rational points (including the point O
at infinity) on a Weierstrass elliptic curve satisfies |N − (p + 1)| ≤ p+3

2 .

This takes care of the existence of Fp-rational points as well as of a bound
for the number of Fp-rational points. Already in the 1930s, a much sharper
bound had been given by Hasse:

Theorem 11.2. The number N of Fp-rational points on an elliptic curve Y 2 =
X3 +aX + b over Fp (including the point O at infinity) satisfies |N − (p+1)| ≤
2
√

p.

11.2 Addition Formulas

In fields F of characteristic 6= 2, 3, every nonsingular cubic with an F -rational
point can be transformed into a curve described by a short Weierstrass equation

77

y2 = x3 + ax + b; for working with elliptic curves over fields with characteristic
2 or 3, these short Weierstrass forms are not suitable, and we will have to work
with equations in long Weierstrass form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (11.5)

for ai ∈ F . If F has characteristic 6= 2, completing the square on the left
hand side allows you to get rid of the xy-term; if the characteristic is ne3, you
similarly can complete the cube on the right hand side to get rid of the x2-term.

Let E be an elliptic curve in long Weierstrass form (11.5) defined over some
field K. For P ∈ E(K) we define −P as the third point of intersection of the
line through P and O = [0 : 1 : 0] with E. If P = [x1 : y1 : 1], the line PO is
given by x = x1; intersection gives

y2 + (a1x1 + a3)y − (x3
1 + a2x

2
1 + a4x1 + a6) = 0,

that is, the sum of the two roots of this quadratic equation is −(a1x1 + a3);
note that this equation describes the affine points only. Since one root is given
by y = y1, the other one must be −(a1x1 + a3)− y1.

Given two points P1 = (x1, y1) and P1 = (x2, y2) in E(K) with x1 6= x2,
let −P1 − P2 = P3 = (x3, y3) be the third point of intersection of the line
P1P2 with E. The line P1P2 has the equation y = y1 + m(x − x1) with m =
(y2 − y1)/(x2 − x1); plugging this into (11.5) yields a cubic equation in x with
the roots x1, x2 and x3. The sum of these roots is the coefficient of x2 (observe
that the coefficient of x3 is −1), hence x3 = −x1−x2−a2+m(a1+m). Plugging
this into the line equation we find the y-coordinate of P3, hence

x3 = −x1 − x2 + m(a1 + m), y3 = −[y1 + m(x3 − x1) + a1x3 + a3].

If x1 = x2, then y1 = ±y2. If y1 = −y2, then we put P1 +P2 = O; if y1 = y2,
that is, P1 = P2, then we let −2P1 be the third point of intersection of the
tangent to E in P1 with E; a simple calculation then gives

Theorem 11.3. Let E/K be an elliptic curve given in long Weierstrass form
(11.5). The chord-tangent method defines an addition on the set E(K) of K-
rational points on E; the addition formulas are given by

(x1, y1) + (x2, y2) = (x3, y3),

where
x3 = −x1 − x2 − a2 + a1m + m2

y3 = −y1 − (x3 − x1)m− a1x3 − a3

and

m =

y2 − y1

x2 − x1
if x1 6= x2

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if x1 = x2

78

In particular, for P = (x, y) the x-coordinate of 2P is given by

x2P =
x4 − b4x

2 − 2b6x− b8

4x3 + b2x2 + 2b4x + b6
. (11.6)

Specializing this to curves in short Weierstrass form, we get

x3 = −x1 − x2 + m2, y3 = −y1 −m(x3 − x1),

where

m =

{
y2−y1
x2−x1

if x2 6= x1,
3x2+a

2y if x2 = x1, y 6= 0.

The cases not covered by these formulas are

a) x1 = x2 and y1 = −y2: here P1 = −P2, hence P1 + P2 = O;

b) 2(x, y) with y = 0: here (x, 0) is a point of order 2, that is, 2(x, y) = O.

In order to see these formulas in action take the curve E : y2+xy = x3−18x+
27. Here a1 = 1, a2 = a3 = 0, a4 = −18 and a6 = 27. We find b2 = 1, b4 = −36,
b6 = 108, b8 = −324, hence c4 = 865, c6 = −24625 and ∆ = 23625 = 33 · 53 · 7.
Thus E is an elliptic curve over Fp for all p 6= 3, 5, 7. The point P = (1, 1) is in
E(F2) : y2 + xy = x3 + 1; let us compute a few multiples of P .

Bu the addition law we have

m =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
=

x2
1 − y1

x1
= 0,

hence x2P = −2xP + m + m2 = 0 and y2P = −yP − (x2P − xP)m − x2P = 1,
i.e., 2P = (0, 1).

We get 3P by adding P and 2P ; here m = (y2 − y1)/(x2 − x1) = 0, hence
x3P = −xP − x2P = 1, as well as y3P = −yP − x3P = 0, hence 3P = (1, 0).

Finally 4P = P + 3P , but here m is not defined because xP = x3P . This
implies (since P 6= 3P) that 4P = O. In fact we have seen that −(x, y) =
(x,−a1x − a3 − y), so in our case we have −(x, y) = (x,−x − y), in particular
−(1, 1) = (1, 0).

Thus P generates a group of order 4. Listing all points in E(F2) we find
that these are all, and we have proved that E(F2) ' Z/4Z.

11.3 ECM

ECM is the elliptic curve method for factoring integers, invented by Hendrik
Lenstra. It is the elliptic curve analog of the p ± 1-methods we have already
discussed.

As above, pick random numbers x, y modulo N and then pick a, b such
that y2 ≡ x3 + ax + b mod N . Now the points on this curve do not form a
group with respect to the geometric group law: the problem is that when you

79

compute P + Q, the denominator in the formula for xP+Q might be divisible
by a prime dividing N . But if the goal is to find such factors, such a failure
of the addition formulas is exactly what you want. Thus take P = (x, y) and
compute kP = (xk, yk) on E(Z/NZ) for a highly composite number k. For
quite a while nothing exciting will happen. But if k becomes so large that the
order of the group E(Z/pZ) divides k, then kP will be the point at infinity
on E(Z/pZ), which means that the denominator of both xk and yk must be
divisible by p. Thus if we compute the gcd of N and the denominators of xk

during the calculations, eventually we will find that this gcd becomes divisible
by p. Except in the rare case when this gcd becomes N , we will have found a
nontrivial factor.

In practice one does not work with a single curve, but with several curves
simultaneously; if no factor is found, more elliptic curves are used, and the
bound for k is increased.

Example

Let Mn = 2n − 1 denote the n-th Mersenne number. On April 25, 1998, the
complete factorization of the Mersenne number M589 was found. Known factors
at the time were M19 = 524287, M31 = 2147483647, as well as 18083479 and
36064471. The factorization

p46 = 2023706519999643990585239115064336980154410119
p103 = 13635133929781911357360183447731257848357221022

11913963639355051056896705852735103386975412732016027769

of the remaining factor was found using the elliptic curve

E : y2 ≡ x3 + Ax2 + x mod p46,

where A ≡ 780120419943404649432897790365517824268303676 mod p46. Its
group order is

#E(Z/p46Z) = 2023706519999643990585250126089270445504437408

= 25 · 3 · 72 · 223 · 661 · 2141 · 2621 · 847031 · 5965699 · 6047191 · 17020639711

The factorizations of p46 ± 1 are

p46 − 1 = 2 · 7 · 19 · 31 · 53 · 181 · 641 · 39910918849486318887656194928323841,

p46 + 1 = 23 · 33 · 5 · 17 · 97 · 1136326460480899754388315654304705983511,

hence p46 could not have been discovered by the p− 1 or p + 1 method.
The current record factor found by ECM is the 67-digit prime factor

4444349792156709907895752551798631908946180608768737946280238078881

80

of 10381 + 1 found by B. Dodson in August 2006. The group order #E(Fp) of
the elliptic curve that turned out to be successful was

N = 22.3.131.124847.1244459.1785599.3000931.4032877.27225659.

29985143.87373729.11805290281

11.4 ECPP

ECPP is the abbreviation of elliptic curve primality proofs. The basis for these
proofs is the following

Theorem 11.4 (Goldwasser-Killian). Let n be an integer coprime to 6, E a
smooth Weierstrass cubic defined mod n (so E is an elliptic curve over Fn if n
is prime), and let N = FR be natural numbers.

Assume that there exists a point P ∈ E(Z/nZ) such that

i) NP = O;

ii) N
q P 6= O for each prime q | F ;

then for every prime p | n we have F | #E(Fp). Moreover, if F > (n1/4 + 1)2,
then n is prime.

Proof. Modulo some obvious changes this is the same proof as for conics. We
have NP = O in E(Fp), but N

q P 6= O for all q | F , and this implies that F

divides the order of the eliptic curve E(Fp). If F > (n1/4 +1)2, then #E(Fp) >
(n1/4 + 1)2; from Hasse’s theorem we know that #E(Fp) ≤ p + 1 + 2

√
p =

(
√

p + 1)2. This gives a contradiction of p ≤
√

n, hence all prime factors of n
are >

√
n, and this means that n is prime.

The actual primality proof based on this criterium works as follows:

1. Pick a random pair a, b ∈ N with gcd(4a3 +27b2, n) = 1 (If n is prime, this
guarantees that the polynomial f(X) = X3 + aX + b has distinct roots in
Fp), and consider E : Y 2 = f(X).

2. Compute the order N of the group E(Z/nZ). There is an ingenious poly-
nomial time algorithm due to Schoof that does this if n is prime; if Schoof’s
algorithm fails, return “n is composite”.

3. Try to find a probable prime factor q > (n1/4 + 1)2 of N with q < N . If
this fails, go back to step 1.

4. Find a point P on E (pick a random value of x, test whether (f(x)
n = +1;

if yes, compute a square root y of f(x) mod n (our algorithm works if n
is prime; if the square root algorithm fails, return “n is composite”), and
set P = (x, y).

81

5. Compute Q = N
q P ; if this calculation fails, return “n is composite”; if

Q = O, go back to step 4. Now check whether qQ = O; if this calculation
fails, or if qQ 6= O, return “n is composite”. Otherwise return “If q is
prime, then so is n”.

It remains to verify that q is prime. This is done via ECPP; since the size of q
decreases approximately by at least a factor of 2 in every step, the size of q will
eventually be small enough so that the q − 1-test (or even trial division) will
prove that q is prime.

The bottleneck of this version of ECPP is the application of Schoof’s point
counting algorithm. Atkin and Morain have suggested a variant of ECPP in
which curves with a given order are constructed. This is currently one of the
fastest general primality proof algorithms available (the other one is based on
cyclotomic number fields, and objects like Gauss and Jacobi sums).

11.5 Point Counting

Let E : y2 = x3 + ax + b be an elliptic curve defined over Fp. For applications
to primality tests we have to find the group order #E(Fp).

The Naive Method

The naive method proceeds by computing the Legendre symbols (f(x)
p) for all

x = 0, 1, . . . , p− 1; if this symbol is −1, there is no point (x, y) on E, if it is 0,
we have 1 point (x, 0), and if it is 2, there are two of them, namely (x, y) and
(x,−y) for some y with y2 = f(x). Thus we find

#E(Fp) =
p−1∑
x=0

(
1 +

(f(x)
p

))
.

This algorithm needs clearly O(p) steps and is therefore useless for large primes
p.

Shanks’ Baby-step Giant-step method

A slightly better method for moderate values of p is provided by the baby-step
giant-step method of Shanks:

1. Pick a point P ∈ E(Fp) and compute Q = (p + 1)P .

2. Choose an integer m > p1/4. Compute and store the points O, P , 2P ,
. . . , mP (baby steps).

3. Compute the points Q+k(2mP) for k = −m,−m+1, . . . ,m (giant steps)
until there is a match Q + 2mkP = ±jP for some j ≤ m.

82

4. Put M = p + 1 + 2mk ± j; we know that MP = O. Factor M and let
p1, . . . , pr denote its prime factors.

5. If M
pi

P = O for some i, replace M with M/pi and go back to step 4. If
M
pi

P 6= O for all i, the order of P is M .

If we want to compute the group order of E(Fp), we find as many points P
and their orders until the lcm of their orders divides exactly one integer in the
interval [p − 2

√
p, p + 2

√
p]. The analysis of the bsgs method (why is there a

match?) is straightforward and left as an exercise.

Schoof’s Algorithm

Schoof’s algorithm uses more advanced concepts like the Frobenius automor-
phism of an elliptic curve, or division polynomials. This is unfortunately be-
yond the scope of these lectures. There is a huge activity in the area of point
counting on elliptic curves, and in recent years quite advanced methods have
been proposed to solve this problem effectively for large values of p.

Exercises

11.1 List all points on E(F3) and E(F5) for E : y2 = x3 + x. Compute an “addition
table” for these groups, and determine their structure.

11.2 Show that #E(Fp) + #E′(Fp) = 2p + 2, where E : y2 = x3 + ax + b and
E′ : y2 = x3 + g2ax + g3b are elliptic curves defined over Fp, and (g

p
) = −1.

83

Chapter 12

Elliptic Curve
Cryptography

In this chapter we will discuss cryptographic protocols based on the groups
E(Fp). In the following, we will always work with an elliptic curve E : Y 2 =
X3 + aX + b over Fp; G will denote a point on E(Fp) with order n (quite often
a prime); moreover we put #E(Fp) = nh.

12.1 Key Exchange

The elliptic analog of Diffie-Hellman works like this: Alice and Bob agree on
the parameters (p, a, b,G, n, h).

Alice Eve Bob

Alice and Bob agree upon (p, a, b,G, n, h)

Alice picks a random a ≤ n Bob picks a random b ≤ n

Alice computes A = aG Bob computes B = bG

Alice sends A to Bob
A−→
B←− Bob sends B to Alice

Alice computes K = aB Bob computes K = bA

Figure 12.1: The Diffie-Hellman key exchange

EC-DH is based on the assumption that it is difficult to solve the elliptic
Diffie-Hellman problem: computing abG from the knowledge of G, aG, and bG.
Clearly anyone who can solve the DLP on elliptic curves (compute a from G

84

and aG) can solve the EDH problem. It is not known whether there is a more
efficient way of solving EDH than via discrete logs.

12.2 Signatures

Here we discuss the elliptic analog of DSA.

EC-DSA

The elliptic analog of DSA proceeds as follows.

1. Alice picks an elliptic curve E over some finite field Fq such that #E(Fq) =
fr, where r is a large prime and f is very small (f = 1, 2, 4 are typical
values).

2. Alice chooses a point G of order r on E(Fq).

3. Alice chooses a random a with 0 < a < r and computes Q = aG.

4. The secret key is a, the public key is (q, E, r, G,Q).

If Alice wants to sign a message m, she picks a hash function h with values
< r and computes h = h(m). Then she chooses a random integer k with
0 < k < r, computes R = kG = (x, y), and then sets s ≡ k−1(h + ax) mod r.
She then signs the message m with the pair (R, s).

When Bob receives the encrypted message, he first decrypts it by computing
m. Then he verifies Alice’s signature as follows. Bob computes the hash value
h = h(m), u ≡ s−1h mod r, v ≡ s−1x mod r, and finally U = uG + vQ. He
declares the signature valid if U = R.

In fact, if the message is signed correctly, then

U = uG + vQ = s−1hG + s−1xQ = s−1(h + ax)G = kG = R.

12.3 Message Encryption via Elliptic Curves

We will briefly discuss elliptic variants of Massey-Omura, as well as two elliptic
analogs of RSA, namely KMOV and Demytko’s scheme. A typical problem is
that of embedding a message m into a given elliptic curve E. One solution is the
following: add 10 bits to the message m in such a way that the enlarged message
m′ is the x-coordinate of a point on E. This is possible with high probability
and seems to work well in practice.

ElGamal

If Alice wants to send Bob a message M encrypted with ElGamal, Bob has to
set up a public key as follows. He picks an elliptic curve E defined over a finite
field Fq such that the DLP is hard for the group E(Fq). He chooses a point

85

P on E such that the order of P is (divisible by) a large prime. He picks a
random integer s and computes B = sP . Bob’s public key then is (Fq, E, P, B),
his private key is the integer s.

Alice Eve Bob

Alice picks a random integer k
and computes M1 = kP as well
as M2 = M + kB, and sends
M1,M2 to Bob.

M1,M2
−→

Bob decrypts the message by
computing M = M2 − sM1

Figure 12.2: The ElGamal public key cryptosystem

This works because M2−sM1 = (M +kB)−s(kP) = M +k(sP)−skP = M .
If Alice uses the same “random” integer k for two messages M and M ′, and

if Eve knows the plaintext M , then she can compute M ′. How?

Massey-Omura

Here Alice and Bob agree on an elliptic curve E defined over a finite field Fq,
where E is chosen in such a way that the DLP in E(Fq) is hard (just as for
the standard DLP, there are some bad choices for which the DLP can be solved
efficiently). They compute the group order N = #E(Fq) and use a method for
embedding messages as points M on the elliptic curve E. Then they basically
follow the classical protocol of Shamir:

Alice Eve Bob

Alice and Bob agree upon (E, q)
Alice picks mA,m−1

A with
mAm−1

A ≡ 1 mod N
Bob picks a pair mB ,m−1

B with
mBm−1

B ≡ 1 mod N .

Alice computes M1 = mAM and
sends M1 to Bob.

M1−→

M2←− Bob computes M2 = mBM and
sends M2 to Alice

Alice computes M3 = m−1
A M2

and sends M3 to Bob

M3−→

Bob decrypts the message by
computing M = m−1

B M3

Figure 12.3: Massey-Omura

86

In fact, m−1
B M3 = m−1

B m−1
A mBmAM = M since mAm−1

A M = (kN +1)M =
M etc.

KMOV

This protocol, which was suggested by Koyama, Maurer, Okamoto & Vanstone,
works as follows. Alice picks primes p, q ≡ 2 mod 3 amd forms the RSA-key
n = pq. It is easy to see that #E(Fp) = p + 1 for all primes p ≡ 2 mod 3 and
elliptic curves E : Y 2 = X3 + b over Fp. Her public encryption key is a random
integer e chosen coprime to N = lcm (p + 1, q + 1), and her private decryption
key d is computed via de ≡ 1 mod N . Although E(Z/nZ) is not a group, it is
still true that NP = O for (almost) all points on E(Z/nZ).

For sending a message M = (m1,m2) ∈ E(Z/nZ) to Alice, Bob computes
b ≡ m2

2−m3
1 mod n and computes C = eM on the elliptic curve E : y2 = x3 +b;

then he sends the pair (b, C) to Alice, who decrypts it by computing M = dC =
deM on E : y2 = x3 + b and recovers the original message by dropping the last
10 bits.

Demytko

Let E : y2 = x3+ax+b be an elliptic curve over Fp, and let d denote a quadratic
nonresidue mod p. Then the cubic Ed : dy2 = x3 + ax + b can be brought into
Weierstrass form by multiplying through with d3 ands setting d2y = Y , dx = X:
this gives Y 2 = X3 + d2aX + d3b. The elliptic curve Ed is called a quadratic
twist of E.

It is an easy exercise to show that if #E(Fp) = p + 1− ap, then #Ed(Fp) =
p + 1 + ap. Moreover, if x is not the x-coordinate of a point on E, then it is
the x-coordinate of a point on Ed. For a point P = (x, y), let k ∗ x denote the
x-coordinate of the point kP .

Now Alice chooses an RSA-modulus n = pq and an elliptic curve E : y2 =
x3 + ax + b defined over Z/nZ. She also finds quadratic nonresidues u mod p
and v mod q, and defines the quadratic twists E+− = Eu(Fp)⊕ E(Fq), E−+ =
E(Fp) ⊕ Ev(Fq), and E−− = Eu(Fp ⊕ Ev(Fq). Let e be an integer coprime to
the groups orders of these four curves (i.e., coprime to p+1±ap and q+1±aq).
In order to encrypt a message m, she first computes (f(m)

p) and (f(m)
q); if both

symbols are positive, then m is the x-coordinate of some point M ∈ E(Z/nZ).
If (f(m)

p) = +1 and (f(m)
q) = −1, then m is the x-coordinate of some point

M ∈ E+− etc. Bob now computes C = e ∗ M and sends C to Alice. For
decrypting the message, Alice sets

N1 = lcm (p + 1− ap, p + 1− aq) if (w
p) = +1, (w

q) = +1,

N2 = lcm (p + 1− ap, p + 1 + aq) if (w
p) = +1, (w

q) = −1,

N3 = lcm (p + 1 + ap, p + 1− aq) if (w
p) = −1, (w

q) = +1,

N4 = lcm (p + 1 + ap, p + 1 + aq) if (w
p) = −1, (w

q) = −1,

87

where w ≡ c3+ac+b mod n. Then she computes di ≡ e−1 mod Ni and decrypts
the message via di ∗ c = die ∗m = m.

88

Bibliography

[1] J. Buchmann, Introduction to cryptography, Springer-Verlag 2001

Gives an undergrad introduction to cryptography, and also provides the
necessary background from algebra and elementary number theory.

[2] H. Cohen, A course in computational algebraic number theory, Springer-
Verlag 1993.

This has become the bible of computational number theorists.

[3] R. Crandall, C. Pomerance, Prime numbers. A computational perspective,
Springer-Verlag 2000

An excellent account of primality tests and factorization methods, along
with the necessary background from number theory. Contains exercises and
lots of problems suitable for research at all levels.

[4] N. Koblitz, Algebraic aspects of cryptography, Springer-Verlag 1999

A more advanced account of certain topics in cryptography. Mostly dis-
cusses complexity questions and finite fields, and gives a readable introduc-
tions to elliptic and hyperelliptic curves, and their use in cryptography.

[5] H. Riesel, Prime numbers and computer methods for factorization,
Birkhäuser 1985.

This book is out of date nowadays, but it contains a very detailed descrip-
tion of the primality tests and factorization methods that had been used
prior to the 1980s.

[6] L. Washington, Elliptic Curves. Number Theory and Cryptography, Chap-
man & Hall, 2003

Maybe the best mix between an elementary approach to elliptic curves and
one that is serious enough to prove the basic results needed for crypto-
graphic applications.

89

	Naive Cryptography
	Cryptograms
	The Gold Bug
	Frequency Analysis

	RSA
	Background in Number Theory
	The Basic Idea
	An Example
	Stupid Things To Do
	Variations
	Some Questions

	Complexity
	Landau's big-O notation
	Complexity of Basic Arithmetic Algorithms

	Primes
	Prime Number Theorem
	Primality Tests
	Background from Number Theory
	Primality Proofs
	AKS

	Factorization Algorithms
	Factoring in the Dark Ages
	Pollard's p-1 and methods
	Modern Methods

	The Security of RSA
	Breaking RSA
	Using a Shared Modulus
	Other Attacks

	Discrete Logarithms
	Cryptographic Tasks
	Diffie-Hellman Key Exchange
	Solving the DLP
	Pohlig-Hellman
	Index Calculus
	Cryptosystems based on DLP

	Basic Cryptographic Protocols
	Authentication
	Zero Knowledge Proofs
	Secret Sharing
	Online Poker
	Number Theoretic Background

	Finite Fields
	Polynomials
	The Frobenius Automorphism

	Pell Conics
	Group Law and Parametrization
	Factorization Methods
	Primality Tests
	Cryptography using Pell Conics

	Elliptic Curves
	The Group Law
	Addition Formulas
	ECM
	ECPP
	Point Counting

	Elliptic Curve Cryptography
	Key Exchange
	Signatures
	Message Encryption via Elliptic Curves

