Introduction to Cryptography

Homework 4

November 14, 2006

1. Assume that Alice uses the shared modulus $N=18923$ and the encryption exponents $e_{1}=11$ and $e_{2}=5$. Suppose Alice encrypts the same message m twice, as $c_{1}=1514$ and $c_{2}=8189$. Show how to compute the plaintext m.

Here $\operatorname{gcd}\left(e_{1}, e_{2}\right)=1$, so we compute $t_{1} \equiv 11^{-1} \equiv 1 \bmod 5$ and $t_{2}=$ $\frac{11 t_{1}-1}{5}=2$. Then $c_{1}^{t_{1}} c_{2}^{-t_{2}} \equiv 1514 \cdot 8189^{2} \equiv 100 \bmod N$.
2. Solve the DLP $6 \equiv 2^{x} \bmod 101$ using enumeration, bsgs, Pollard's rho method, and Pohlig-Hellman.

Enumeration means we just compute $2^{x} \bmod 101$ until the result is $6 \bmod$ 101. The oneliner

```
for(a=1,100,if(Mod(2^a-6,101),,print(a)))
```

tells us that $x=70$.
Baby-step Giant-step: here we compute $6 \cdot 2^{-r} \bmod 101$ for $r=0,1, \ldots$, 11 and store the values; since none of the elements $\left(2^{-r} \cdot 6 \bmod 101, r\right)$ has the form $(1, r)$, we compute $d \equiv g^{m}=2^{11} \bmod 101$ and the giant steps $d^{m} \bmod 101$. We find the match $d^{6} \equiv 6 \cdot 2^{-4} \bmod 101$, which gives us $x=6 m+4=70$.

Pollard's ρ method: see the notes.
Pohlig-Hellman: we want to solve $2^{x} \equiv 6 \bmod 101$ in the $\operatorname{group}(\mathbb{Z} / 101 \mathbb{Z})^{\times}$ of order $100=2^{2} 5^{2}$. To this end we put $n_{2}=25$ and $n_{5}=4$, as well as $g_{2} \equiv$ $g^{25} \equiv 10 \bmod 101, a_{2} \equiv 6^{25} \equiv 100 \bmod 101$ and $g_{5} \equiv g^{4} \equiv 16 \bmod 101$, $a_{5} \equiv 6^{4} \equiv 84 \bmod 101$. Then we have to solve $100 \equiv 10^{x(2)} \bmod 101$ and $84 \equiv 16^{x(5)} \bmod 101$.
In this case we already see that $x(2)=2$. To find $x(5)$, we raise $84 \equiv$ $16^{x(5)} \bmod 101$ to the 5 th power and find $1 \equiv 95^{5 x(5)} \bmod 101$. With $x(5)=x_{0}+5 x_{1}$ this gives $5 x(5) \equiv 0 \bmod 25$ or $x_{0}=0$.

Now we have to solve $16^{5 x_{1}} \equiv 84 \bmod 101$; enumeration (this is a DLP in a group of order 5) gives $x_{1}=4$.
Thus $x(2)=2, x(5)=4 \cdot 5=20$, and the system $x \equiv 2 \bmod 4, x \equiv$ $20 \bmod 25$ has the solution $x \equiv 70 \bmod 101$.
3. Show that the sequence of b_{i} in Pollard's ρ method is periodic after a match has occurred.

If $b_{r}=f_{r}(x)=f_{s}(x)=b_{s}$, then of course $b_{r+1}=f\left(b_{r}\right)=f\left(f_{r}(x)\right)=$ $f\left(f_{s}(x)\right)=b_{s+1}$.
4. This exercise explains why Floyd's cycle finding method works. Let s and $s+c$ denote the smallest indices with $b_{s}=b_{s+c}$; then the preperiod (the tail of the ρ) has length s, and the cycle has length c.
(a) Let $i=2^{j}$ be the smallest power of 2 with $2^{j} \geq s$. Show that b_{i} is inside the cycle.
This is trivial since $i \geq s$.
(b) If $i=2^{j} \geq c$, show that one of the elements $b_{i+1}, b_{i+2}, \ldots, b_{2 i}$ is equal to b_{i}.
We have $b_{i}=b_{i+c}$ since c is the cyclie length. Thus we only have to show that $i+c \leq 2 i$, which is equivalent to $c \leq i$.

