Introduction to Cryptography

Homework 3

November 2, 2006

1. Apply the AKS test to $n=31$ and $n=143$.
2. Consider $n=143$ first. We have to check whether $n=a^{b}$ for $b>2$; from $b=\log n / \log a<\log n / \log 2<8$ we see that we have to test whether n is a square, cube, or a fifth or seventh power. Computing $n^{1 / r}$ for $2=2,3,5,7$ immediately shows that this is not the case.
Then we have to find some r such that $n \bmod r$ has order ≥ 208 (note that $\log 31 \approx 5$ since we are working with the logarithm to base 2). Let us pick a few primes r and compute the order of $n \bmod r$ (pari can do this: just type in $\mathrm{x}=\operatorname{Mod}(143, \mathrm{r}) ; \operatorname{znorder}(\mathrm{x}))$. We get $r=227$, with the order of $n \bmod r$ being 226 .

Now we set $\ell=\lceil 2 \sqrt{r} \log n\rceil+1$. This gives us $\ell=215$. Strictly speaking we now find that $\operatorname{gcd}(11, n)=11$ and declare n to be composite, but let's pretend this never happened. Then we have to perform the actual primality test: checking whether $(X-a)^{n} \equiv X^{n}-a \bmod \left(X^{r}-1, n\right)$ for small a. Since $r>n$, we do not have to compute $\bmod X^{r}-1$ at all. Here's how to do the rest using pari

$$
\mathrm{n}=143 ; \mathrm{X}=\mathrm{Mod}(1, \mathrm{n}) * \mathrm{X} ; \operatorname{lift}\left((\mathrm{X}-1)^{\wedge} \mathrm{n}\right)
$$

Here the second command creates the polynomial $\overline{1} \cdot X$ in $\mathbb{Z} / n \mathbb{Z}$; the third one lifts the result to an actual polynomial. The output given by pari is: $X^{143}+130 * X^{132}+132 * X^{130}+\ldots+13 * X^{11}+142$. Since this is not equal to $X^{143}+142$, the integer n is not prime.

Now for $n=31$. Pick $r=107$; the order of $n \bmod r$ is then 106. Here we find, using the program

$$
a=1 ; n=31 ; X=\operatorname{Mod}(1, n) * X ; \operatorname{lift}\left((X-a)^{\wedge} 31\right)
$$

that 31 indeed behaves as a prime.
2. Write a pari program that determines the three smallest composite integers n that pass a Fermat test with base $a=2$.

Here is one:

$$
\begin{aligned}
& \{\operatorname{for}(\mathrm{n}=2,1000, \text { if (isprime }(\mathrm{n}), \\
& \operatorname{if}\left(\operatorname{Mod}(2, \mathrm{n})^{\wedge}(\mathrm{n}-1)-1,,\right. \\
& \operatorname{print}(\mathrm{n}, " \quad \quad \quad, \text { factor }(\mathrm{n})))))\}
\end{aligned}
$$

The output is $341=11 \cdot 31 ; 561=3 \cdot 11 \cdot 17 ; 645=3 \cdot 5 \cdot 43$.
3. Show that, in Lehman's algorithm, we have

$$
2 \sqrt{k n} \leq a \leq 2 \sqrt{k n}+\frac{n^{1 / 6}}{4 \sqrt{k}}
$$

Use this to prove that the number of iterations in the loops on k and a is at most $\sum_{k=1}^{B} \frac{n^{1 / 6}}{4 \sqrt{k}}$ (recall that $B=\left\lfloor n^{1 / 3}\right\rfloor$, and that this is $O\left(n^{1 / 3}\right)$.

Observe that

$$
\sum_{k=1}^{B} \frac{1}{\sqrt{k}}<1+\int_{1}^{B} \frac{d k}{\sqrt{k}}=1+2(\sqrt{B}-1)<2 n^{1 / 6}
$$

hence

$$
\sum_{k=1}^{B} \frac{n^{1 / 6}}{4 \sqrt{k}}=\frac{n^{1 / 6}}{4} \sum_{k=1}^{B} \frac{1}{\sqrt{k}}<\frac{n^{1 / 3}}{2}
$$

4. Show that $n=56897193526942024370326972321$ is a strong pseudoprime (i.e., passes Miller-Rabin) for $a=p$ for all primes $p \leq 29$. (Note: you can cut and paste this number into pari if you go to http://www.trnicely.net/misc/mpzspsp.html)
Show that the primality tests reveal different square roots of $-1 \bmod n$; show how you can use this information to factor n.
Also use Fermat's method with multiplier $k=3$ to factor the number. What do you observe?

We find that $n-1 \equiv 32 \bmod 64$, so we put $r=\frac{n-1}{32}$. Now the following program

$$
a=2 ; \operatorname{for}\left(j=0,5, \operatorname{print}\left(j, " \quad ", \operatorname{lift}\left(\operatorname{Mod}(a, n)^{\wedge}\left(2^{\wedge} j * r\right)\right)\right)\right)
$$

computes the remainders we need. Here we see that we get -1 for $j=1$, so n is a strong 2 -pseudoprime. In fact we get the remainder -1 for all primes $2 \leq a \leq 29$ except $a=3$; for $a=3$ and $a=31$ we find that $a^{r} \equiv 1 \bmod n$.
Note that n does not pass the Fermat test for $n=37$ or 41 . Here's the output for $a=37$:

0	17282940531730601543271515221
1	41146895604985750006510897616
2	12698298841514531247159417876
3	15750297921955861215440087548
4	12698298841514531247159417876
5	15750297921955861215440087548

and the first two lines for $a=41$:

0	39507312774642251961139492209
1	41146895604986163154886884773
2	12698298841514531247159417876

Here we see that the results for $i=2$ are the same, but that they are different for $i=1$. Thus if we set $x \equiv 37^{2 r} \bmod n$ and $y \equiv 41^{2 r} \bmod n$, then $x^{2} \equiv y^{2} \bmod n$. Now $\operatorname{gcd}(x-y, n)$ gives us the factor 413148375987157 of n.

We can also factor n with the Fermat method and multiplier $k=3$: $\sqrt{3 n} \approx 413148375987157.99999 \ldots$; with $x=413148375987158$ we find $x^{2}-3 n=1$, and $\operatorname{gcd}(x-1, n)=413148375987157$.
The reason for this behavior is that n has the factorization $n=p(3 p-2)$ for $p=137716125329053$, so the prime factors have a ratio very close to the multiplier $k=3$.
5. Use the pari program

```
n=13231;k=10; x=lift(Mod(3,n)^(k!));print(gcd(x-1,n))
```

to factor $2^{67}-1$ using $k=1000,2000,3000, \ldots$; Explain why the method was not successful for the first two choices, but found the prime factor with the last.

If you use $a=2$, you won't be able to factor n. This is because for $n=2^{p}-1$ and odd primes p, we always have $2^{p} \equiv 1 \bmod n$.
With base $a=3$ and $k=3000$, however, you find the prime factor $q=$ 193707721 in an instant. The reason is that $q-1=2^{3} 3^{3} \cdot 5 \cdot 67 \cdot 2677$ factors into primes <3000.
6. Consider the integer $n=10007030021$. Write a little pari program and apply Pollard's rho method with various functions $f(x)=x^{2}+a$ and starting values c, and count how many iterations it takes to find the factorization.

Here's what we find:

c	a	iterations
2	1	40
3		186
6		186
7		186
8	186	
39	186	
111	30	
112	186	

Thus there seem to be only a few possible cycle lengths for a fixed a. Here's the correspnding table for $a=2$:

c	a	iterations
2	2	110
3		55
6		110
7	165	
8	55	
39	110	
111	110	
112	55	

Note that the number of iterations needed for finding the prime factor $10007 \approx 10^{4}$ is expected to be of magnitude 100 . The situation is totally different for $a=-2$:

c	a	iterations
3	-2	69
6		2501
7		69
8		69
39		2501
111		2501
112		69

Here we sometimes find the factor after 69 iterations, but for some starting values the number of iterations needed is a lot larger than \sqrt{p}. The reason is that if $x \equiv r+\frac{1}{r} \bmod n$, then $x^{2}-2 \equiv r^{2}+\frac{1}{r^{2}} \bmod n$, so the values of $f(x)=x^{2}-2$ lie in the subset of all residue classes $\bmod n$ that can be written in the form $r+\frac{1}{r} \bmod n$. then

