
Introduction to Cryptography

Homework 3

November 2, 2006

1. Apply the AKS test to n = 31 and n = 143.

1. Consider n = 143 first. We have to check whether n = ab for b > 2; from
b = log n/ log a < log n/ log 2 < 8 we see that we have to test whether n is a
square, cube, or a fifth or seventh power. Computing n1/r for 2 = 2, 3, 5, 7
immediately shows that this is not the case.

Then we have to find some r such that n mod r has order ≥ 208 (note
that log 31 ≈ 5 since we are working with the logarithm to base 2). Let us
pick a few primes r and compute the order of n mod r (pari can do this:
just type in x = Mod(143, r); znorder(x)). We get r = 227, with the order
of n mod r being 226.

Now we set ` = d2
√

r log ne+ 1. This gives us ` = 215. Strictly speaking
we now find that gcd(11, n) = 11 and declare n to be composite, but
let’s pretend this never happened. Then we have to perform the actual
primality test: checking whether (X − a)n ≡ Xn − a mod (Xr − 1, n) for
small a. Since r > n, we do not have to compute mod Xr−1 at all. Here’s
how to do the rest using pari

n=143;X=Mod(1,n)*X;lift((X-1)^n)

Here the second command creates the polynomial 1 ·X in Z/nZ; the third
one lifts the result to an actual polynomial. The output given by pari is:
X143 + 130 ∗ X132 + 132 ∗ X130 + . . . + 13 ∗ X11 + 142. Since this is not
equal to X143 + 142, the integer n is not prime.

Now for n = 31. Pick r = 107; the order of n mod r is then 106. Here we
find, using the program

a=1;n=31;X=Mod(1,n)*X;lift((X-a)^31)

that 31 indeed behaves as a prime.

1



2. Write a pari program that determines the three smallest composite inte-
gers n that pass a Fermat test with base a = 2.

Here is one:

{for(n=2,1000,if(isprime(n),,
if(Mod(2,n)^(n-1)-1,,
print(n," ",factor(n)))))}

The output is 341 = 11 · 31; 561 = 3 · 11 · 17; 645 = 3 · 5 · 43.

3. Show that, in Lehman’s algorithm, we have

2
√

kn ≤ a ≤ 2
√

kn +
n1/6

4
√

k
.

Use this to prove that the number of iterations in the loops on k and a is
at most

∑B
k=1

n1/6

4
√

k
(recall that B = bn1/3c, and that this is O(n1/3).

Observe that

B∑
k=1

1√
k

< 1 +
∫ B

1

dk√
k

= 1 + 2(
√

B − 1) < 2n1/6,

hence
B∑

k=1

n1/6

4
√

k
=

n1/6

4

B∑
k=1

1√
k

<
n1/3

2
.

4. Show that n = 56897193526942024370326972321 is a strong pseudoprime
(i.e., passes Miller-Rabin) for a = p for all primes p ≤ 29. (Note: you can
cut and paste this number into pari if you go to
http://www.trnicely.net/misc/mpzspsp.html)

Show that the primality tests reveal different square roots of −1 mod n;
show how you can use this information to factor n.

Also use Fermat’s method with multiplier k = 3 to factor the number.
What do you observe?

We find that n − 1 ≡ 32 mod 64, so we put r = n−1
32 . Now the following

program

a=2;for(j=0,5,print(j," ",lift(Mod(a,n)^(2^j*r))))

2



computes the remainders we need. Here we see that we get −1 for j = 1,
so n is a strong 2-pseudoprime. In fact we get the remainder −1 for all
primes 2 ≤ a ≤ 29 except a = 3; for a = 3 and a = 31 we find that
ar ≡ 1 mod n.

Note that n does not pass the Fermat test for n = 37 or 41. Here’s the
output for a = 37:

0 17282940531730601543271515221
1 41146895604985750006510897616
2 12698298841514531247159417876
3 15750297921955861215440087548
4 12698298841514531247159417876
5 15750297921955861215440087548

and the first two lines for a = 41:

0 39507312774642251961139492209
1 41146895604986163154886884773
2 12698298841514531247159417876

Here we see that the results for i = 2 are the same, but that they are dif-
ferent for i = 1. Thus if we set x ≡ 372r mod n and y ≡ 412r mod n, then
x2 ≡ y2 mod n. Now gcd(x− y, n) gives us the factor 413148375987157 of
n.

We can also factor n with the Fermat method and multiplier k = 3:√
3n ≈ 413148375987157.99999 . . .; with x = 413148375987158 we find

x2 − 3n = 1, and gcd(x− 1, n) = 413148375987157.

The reason for this behavior is that n has the factorization n = p(3p− 2)
for p = 137716125329053, so the prime factors have a ratio very close to
the multiplier k = 3.

5. Use the pari program

n=13231;k=10;x=lift(Mod(3,n)^(k!));print(gcd(x-1,n))

to factor 267−1 using k = 1000, 2000, 3000, . . . ; Explain why the method
was not successful for the first two choices, but found the prime factor
with the last.

If you use a = 2, you won’t be able to factor n. This is because for
n = 2p − 1 and odd primes p, we always have 2p ≡ 1 mod n.

With base a = 3 and k = 3000, however, you find the prime factor q =
193707721 in an instant. The reason is that q − 1 = 2333 · 5 · 67 · 2677
factors into primes < 3000.

3



6. Consider the integer n = 10007030021. Write a little pari program and
apply Pollard’s rho method with various functions f(x) = x2 + a and
starting values c, and count how many iterations it takes to find the fac-
torization.

Here’s what we find:
c a iterations
2 1 40
3 186
6 186
7 186
8 186

39 186
111 30
112 186

Thus there seem to be only a few possible cycle lengths for a fixed a.
Here’s the correspnding table for a = 2:

c a iterations
2 2 110
3 55
6 110
7 165
8 55

39 110
111 110
112 55

Note that the number of iterations needed for finding the prime factor
10007 ≈ 104 is expected to be of magnitude 100. The situation is totally
different for a = −2:

c a iterations
3 −2 69
6 2501
7 69
8 69

39 2501
111 2501
112 69

Here we sometimes find the factor after 69 iterations, but for some starting
values the number of iterations needed is a lot larger than

√
p. The reason

is that if x ≡ r + 1
r mod n, then x2 − 2 ≡ r2 + 1

r2 mod n, so the values of
f(x) = x2 − 2 lie in the subset of all residue classes mod n that can be written
in the form r + 1

r mod n. then

4


