Introduction to Cryptography

Homework 3

October 6, 2006

1. Apply the AKS test to $n=31$ and $n=143$.
2. Write a pari program that determines the three smallest composite integers n that pass a Fermat test with base $a=2$.
3. Show that, in Lehman's algorithm, we have

$$
2 \sqrt{k n} \leq a \leq 2 \sqrt{k n}+\frac{n^{1 / 6}}{4 \sqrt{k}}
$$

Use this to prove that the number of iterations in the loops on k and a is at most $\sum_{i=1}^{B} \frac{n^{1 / 6}}{4 \sqrt{k}}$ (recall that $B=\left\lfloor n^{1 / 3}\right\rfloor$, and that this is $O\left(n^{1 / 3}\right)$.
4. Show that $n=56897193526942024370326972321$ is a strong pseudoprime (i.e., passes Miller-Rabin) for $a=p$ for all primes $p \leq 29$. (Note: you can cut and paste this number into pari if you go to
http://www.trnicely.net/misc/mpzspsp.html)
Show that the primality tests reveal different square roots of $-1 \bmod n$; show how you can use this information to factor n.
Also use Fermat's method with multiplier $k=3$ to factor the number. What do you observe?
5. Use the pari program

$$
\mathrm{n}=13231 ; \mathrm{k}=10 ; \mathrm{x}=\operatorname{lift}\left(\operatorname{Mod}(2, \mathrm{n})^{\wedge}(\mathrm{k}!)\right) ; \operatorname{print}(\operatorname{gcd}(\mathrm{x}-1, \mathrm{n}))
$$

to factor $2^{67}-1$ using $k=1000,2000,3000, \ldots$; Explain why the method was not successful for the first two choices, but found the prime factor with the last.
6. Consider the integer $n=10007030021$. Write a little pari program and apply Pollard's rho method with various functions $f(x)=x^{2}+a$ and starting values c, and count how many iterations it takes to find the factorization.

