
Introduction to Cryptography

Homework 2

October 16, 2006

1. Assume that m and n are coprime integers; for solving the system of
congruences

x ≡ a mod m,

x ≡ b mod n,

compute integers r, s with mr + ns = 1, and put x = ans + bmr.

(a) Show that this x solves the system.

(b) Estimate the complexity of this algorithm; here you may assume that
0 ≤ a < m and 0 ≤ b < n.

We have ans + bmr ≡ ans ≡ a mod m since ns ≡ 1 mod m; similarly we
can prove that ans + bmr ≡ b mod n.

Now put M = mn; note that log M = log m+log n. Since |r| < n and |s| <
m, the multiplications mr and ns require O(log m log n) steps, which is
bounded by O((log M)2. Multiplying ns by a requires about log ns log a =
(log n+log s) log a < (log n+log m) log m < (log M)2 bit operations, hence
is bounded by O((log M)2). The same is true for finding the product bmr,
and for adding the resulting products. Thus the complexity of applying
the Chinese Remainder Theorem is O((log M)2) with M = mn.

2. Let f, g ∈ Z[X] be polynomials. What is the complexity for computing
f + g and fg?

Let f(x) =
∑d

i=0 aix
i and g(x) =

∑e
j=0 bjx

j , and put D = max{d, e}.
Also, let A denote the maximum of the coefficients ai, bj . For adding the
polynomials we have perform at most D+1 additions of numbers ≤ A,
so the complexity is O((D + 1) log A). If the degree of the polynomials
involved is bounded, D is a constant, and then the complexity of addition
is just O(log A).

For somputing the coefficient ck of the product fg =
∑d+e

k=0 ckxk, we have
to compute the products aibj ; there are (d+1)(e+1) of them. Since each
such product occurs in exactly one sum, there are at most (d + 1)(e + 1)

1

additions to perform. The multiplication require O((d+1)(e+1)(log A)2)
bit operations, and the additions of the resulting products, which are
≤ A2, cost at most O((d+1)(e+1)(log A2)) = O(2(d+1)(e+1) log A) bit
operations. Thus the overall complexity can be bounded by O((d+1)(e+
1)(log A)2).

3. Let f and g be polynomials in (Z/mZ)[X]. What is the complexity for
computing f + g and fg? Here the coefficients are bounded by m, hence

we find the complexities O(D log m) and O((d + 1)(e + 1)(log m)2) for
addition and multiplication. Afterwards, we have to reduce the d + e + 1
coefficients mod m, which costs O((d+e+1)(log m)2 bit operations since,
in a = bq + r, we have a < m2 and b = m, so q < m as well.

Adding these numbers gives an upper bound O((d + 1)(e + 1)(log m)2).

4. Prove the following rules for gcd’s of natural numbers:

gcd(a, b) =

2 gcd(a

2 , b
2) if 2 | a, 2 | b;

gcd(a
2 , b) if 2 | a, 2 - b;

gcd(a−b
2 , b) if 2 - ab.

If a and b are even and d = gcd(a, b), then we have to show that

2 gcd(a
2 , b

2) | d and d | 2 gcd(a
2 , b

2) | d.

This is easy, and so are the other claims.

5. Show how to compute gcd(91, 77) using these rules. This algorithm is due
to Stein (1961).

gcd(91, 77) = gcd(
91− 77

2
, 77) = gcd(7, 77)

= gcd(
77− 7

2
, 7) = gcd(35, 7)

= gcd(
35− 7

2
, 7) = gcd(14, 7)

= gcd(
14
2

, 7) = gcd(7, 7)

= 7.

2

