ALGEBRAIC NUMBER THEORY

HOMEWORK 5

(1) Compute all reduced forms of discriminant $\Delta=-4 \cdot 17$.

Since $A<\sqrt{4 \cdot 17 / 3}<5$, we have to consider $A=1,2,3,4$. Oberve that $B \equiv \Delta \equiv 0 \bmod 2$. We find the principal form $Q_{0}=(1,0,17)$, as well as $Q_{2}=(2,2,9), Q_{1}=(3,2,6)$ and $Q_{1}=(3,-2,6)$. Note that $(2,-2,9)$ is not reduced.

Also observe that we must have $\mathrm{Cl}(-4 \cdot 17) \simeq \mathbb{Z} / 4 \mathbb{Z}$: the class number is 4 , and the classes of Q_{1} and Q_{3} are inverses of each other and distinct (distinct reduced forms give distinct classes). Thus the class [(3,2,6)] must have order >2.
(2) Use Shanks' method to compute the composition table for all reduced forms of discriminant $\Delta=-4 \cdot 17$.

The principal form Q_{0} is the neutral element. Thus we need to deal with the classes of Q_{1}, Q_{2} and Q_{3}. We have already seen that $\left[Q_{1}\right]$ generates the class group, and that $3\left[Q_{1}\right]=-\left[Q_{1}\right]=\left[Q_{3}\right]$; this implies $2\left[Q_{1}\right]=\left[Q_{2}\right]$, as well as $\left[Q_{1}\right]+\left[Q_{2}\right]=\left[Q_{1}\right]+2\left[Q_{1}\right]=3\left[Q_{1}\right]=\left[Q_{3}\right]$ etc. Let us now check via composition that we really have $2\left[Q_{1}\right]=\left[Q_{2}\right]$.

We find $A_{1}=A_{3}=3, B=2, d=\operatorname{gcd}(3,3,2)=1$; the cube

gives the equations $2 \alpha-3 \gamma=6,2 \beta-3 \gamma=6$, and $3 \alpha-3 \beta=0$. Thus $\alpha=\beta=$ 0 and $\gamma=-2$ gives a solution, and the resulting form is $(9,-2,2) \sim(2,2,9)$. Note that we have proved $2\left[Q_{1}\right]+[(2,2,9)]=0$, so strictly speaking we have $2\left[Q_{1}\right]=-[(2,2,9)]=[(2,-2,9)]$; but since $(2,-2,9) \sim(2,2,9)$, this does not matter here.

By the way: the fact that $2\left[Q_{2}\right]=Q_{0}$ can be checked immediately: here we have $A_{1}=A_{2}=B=2$, hence $d=2$ and $A_{3}=A_{1} A_{2} / d^{2}=1$. Forms with leading coefficient 1 are equivalent to the principal form (reduction of B shows that the form is equivalent to $(1,0, *)$ or $(1,1, *))$.

You can check your calculations with pari. The commands

```
x = Qfb (3,2,6)
y=qfbcompraw (x,x)
qfbred(y)
```

give $y=(9,2,2)$, and $(2,2,9)$ as the final result.
(3) Compute all reduced forms of discriminant $\Delta=-47$.

Here $A<4$, and we easily find the reduced forms $(1,1,12),(2, \pm 1,6)$ and $(3, \pm 1,4)$. (Side remark: with a little bit of experience you can predict the existence of the last pair like this: since $2 \cdot 6=3 \cdot 4$, the forms $(2, \pm 1,6)$ and $(3, \pm 1,4)$ have the same discriminant. For example, $(2,1,10)$ is a form of discriminant -89 , and so is $(4,1,5))$. Thus the class number is 5 , and the class group is cyclic, generated by any of the classes different from the principal class.
(4) Let $Q=(2,1,6)$ denote a form of discriminant -47 . Show that $5[Q]=$ $\left[Q_{0}\right]$ in the class group of forms. (Hint: compute $2[Q]$ and $4[Q]$ using composition.)

I claim that $2 Q \sim(4,1,3)=(3,-1,4)$ and $4 Q \sim(9,5,2) \sim(2,-1,6)$, hence $4[Q]=-[Q]$ and thus $5[Q]=0$.

In fact, for computing $2 Q$ we set up the cube

The equations are $\alpha-2 \gamma=6, \beta-2 \gamma=6$, (it is sufficient to work with the equations involving C_{1} and C_{2}; they are easier to derive from the cube than the one involving $\left.\left(B_{2}-B_{1}\right) / 2\right)$ hence we can take $\alpha=\beta=0$ and $\gamma=3$. This gives $A_{3}=A_{1} A_{2}=4, B_{2}=1$ and $C_{3}=3$, hence $2[Q]+[(4,-1,3)]=0$, or $2[Q]=[(4,1,3)]=[(3,-1,4)]$.

The computation of $2[(3,-1,4)]$ gives $(9,5,2) \sim(2,-5,9) \sim(2,-1,6)$ as claimed.

