ALGEBRAIC NUMBER THEORY

HOMEWORK 4

(1) Compute the ideal class group of $K = \mathbb{Q}(\sqrt{-17})$.

Gauss bound $\mu_K \approx 4.7$; (2) = \mathfrak{p}_2^2 , $(\frac{-17}{3}) = +1$, (3) = $\mathfrak{p}_3\mathfrak{p}_3'$ with $\mathfrak{p}_3 = (3, 1 + \sqrt{-17})$.

From $(1 + \sqrt{-17}) = \mathfrak{p}_2 \mathfrak{p}_3^2$ and $\mathfrak{p}_2^2 = (2) \sim (1)$ we get $\mathfrak{p}_3^4 \sim (1)$. Since there are no elements of norm 3, 9 or 27, we conclude that $[\mathfrak{p}_3]$ generates a cyclic subgroup of order 4 in $\operatorname{Cl}(K)$. Since $[\mathfrak{p}]^2 = [\mathfrak{p}_2]^{-1} = [\mathfrak{p}_2]$ and $[\mathfrak{p}_3'] = [\mathfrak{p}_3]^{-1} = [\mathfrak{p}_3]^3$, every ideal class contains a power of \mathfrak{p}_3 , and this shows that $\operatorname{Cl}(K) = \langle [\mathfrak{p}_3] \rangle \simeq \mathbb{Z}/4\mathbb{Z}$.

(2) Compute the ideal class group of $\mathbb{Q}(\sqrt{-47})$.

The Gauss bound is < 4, and we have (2) = $\mathfrak{p}_2\mathfrak{p}_2'$ and (3) = $\mathfrak{p}_3\mathfrak{p}_3'$ with $\mathfrak{p}_2 = (2, \frac{1+\sqrt{-47}}{2})$ and $\mathfrak{p}_3 = (3, \frac{1+\sqrt{-47}}{2})$.

Now $\left(\frac{1+\sqrt{-47}}{2}\right) = \mathfrak{p}_2^2\mathfrak{p}_3$ shows that every ideal class must be a power of $[\mathfrak{p}_2]$. The smallest power of 2 that is a norm is easily seen to be $2^5 = N(\frac{9+\sqrt{-47}}{2})$, and $\left(\frac{9+\sqrt{-47}}{2}\right) = \mathfrak{p}_2^5$ shows that $[\mathfrak{p}_2]$ has order 5. Thus $\operatorname{Cl}(K) = \langle [\mathfrak{p}_2] \rangle \simeq \mathbb{Z}/5\mathbb{Z}$.

(3) Show that $\mathbb{Q}(\sqrt{-163})$ has class number 1.

the Gauss bound is < 8; the ideals (2), (3), (5) and (7) are all inert, so all ideals with norm < 8 are principal. This implies the claim.

(4) Compute the class number of $\mathbb{Q}(\sqrt{65})$.

Here we have to look at prime ideals with norms ≤ 3 . We find $(2) = \mathfrak{p}_2\mathfrak{p}'_2$ and that (3) is inert. Is $\mathfrak{p}_2 = (2, \frac{1+\sqrt{65}}{2}) = (\alpha)$ principal? Write $\alpha = \frac{a+b\sqrt{65}}{2}$ and consider the equation $N\alpha = \pm 2$, that is, $a^2 - 65b^2 = \pm 8$. Reduction mod 5 gives the contradiction $(\frac{\pm 2}{5}) = +1$. Thus \mathfrak{p}_2 is not primcipal. On the other hand, $(\frac{9+\sqrt{65}}{2}) = \mathfrak{p}_2^2$ shows that $\mathfrak{p}_2^2 \sim (1)$, and since $[\mathfrak{p}'_2] = [\mathfrak{p}_2]^{-1} =$ $[\mathfrak{p}_2]$, the class group has order 2 and is generated by $[\mathfrak{p}_2]$.

(5) Compute the class number of $\mathbb{Q}(\sqrt{221})$.

The only prime ideals with norm less than the Gauss bound are (2), $\mathfrak{p}_5 = (5, 1 + \sqrt{221})$, and \mathfrak{p}'_5 . Clearly $\mathfrak{p}_5^2 = (14 - \sqrt{221})$ is principal. What about \mathfrak{p}_5 ? If $\mathfrak{p}_5 \sim (1)$, then $a^2 - 5b^2 = \pm 20$ must be solvable. Reduction mod 13 gives a contradiction. Thus $\operatorname{Cl}(K) = \langle [\mathfrak{p}_5] \rangle \simeq \mathbb{Z}/2\mathbb{Z}$.