ALGEBRAIC NUMBER THEORY

HOMEWORK 4

(1) Compute the ideal class group of $K=\mathbb{Q}(\sqrt{-17})$.

Gauss bound $\mu_{K} \approx 4.7 ;(2)=\mathfrak{p}_{2}^{2},\left(\frac{-17}{3}\right)=+1,(3)=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}$ with $\mathfrak{p}_{3}=$ $(3,1+\sqrt{-17})$.

From $(1+\sqrt{-17})=\mathfrak{p}_{2} \mathfrak{p}_{3}^{2}$ and $\mathfrak{p}_{2}^{2}=(2) \sim(1)$ we get $\mathfrak{p}_{3}^{4} \sim(1)$. Since there are no elements of norm 3,9 or 27 , we conclude that $\left[\mathfrak{p}_{3}\right]$ generates a cyclic subgroup of order 4 in $\mathrm{Cl}(K)$. Since $[\mathfrak{p}]^{2}=\left[\mathfrak{p}_{2}\right]^{-1}=\left[\mathfrak{p}_{2}\right]$ and $\left[\mathfrak{p}_{3}^{\prime}\right]=\left[\mathfrak{p}_{3}\right]^{-1}=\left[\mathfrak{p}_{3}\right]^{3}$, every ideal class contains a power of \mathfrak{p}_{3}, and this shows that $\mathrm{Cl}(K)=\left\langle\left[\mathfrak{p}_{3}\right]\right\rangle \simeq \mathbb{Z} / 4 \mathbb{Z}$.
(2) Compute the ideal class group of $\mathbb{Q}(\sqrt{-47})$.

The Gauss bound is <4, and we have $(2)=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}$ and (3) $=\mathfrak{p}_{3} \mathfrak{p}_{3}^{\prime}$ with $\mathfrak{p}_{2}=\left(2, \frac{1+\sqrt{-47}}{2}\right)$ and $\mathfrak{p}_{3}=\left(3, \frac{1+\sqrt{-47}}{2}\right)$.

Now $\left(\frac{1+\sqrt{-47}}{2}\right)=\mathfrak{p}_{2}^{2} \mathfrak{p}_{3}$ shows that every ideal class must be a power of $\left[\mathfrak{p}_{2}\right]$. The smallest power of 2 that is a norm is easily seen to be $2^{5}=$ $N\left(\frac{9+\sqrt{-47}}{2}\right)$, and $\left(\frac{9+\sqrt{-47}}{2}\right)=\mathfrak{p}_{2}^{5}$ shows that $\left[\mathfrak{p}_{2}\right]$ has order 5 . Thus $\mathrm{Cl}(K)=$ $\left\langle\left[\mathfrak{p}_{2}\right]\right\rangle \simeq \mathbb{Z} / 5 \mathbb{Z}$.
(3) Show that $\mathbb{Q}(\sqrt{-163})$ has class number 1 .
the Gauss bound is <8; the ideals $(2),(3),(5)$ and (7) are all inert, so all ideals with norm <8 are principal. This implies the claim.
(4) Compute the class number of $\mathbb{Q}(\sqrt{65})$.

Here we have to look at prime ideals with norms ≤ 3. We find (2) $=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}$ and that (3) is inert. Is $\mathfrak{p}_{2}=\left(2, \frac{1+\sqrt{65}}{2}\right)=(\alpha)$ principal? Write $\alpha=\frac{a+b \sqrt{65}}{2}$ and consider the equation $N \alpha= \pm 2$, that is, $a^{2}-65 b^{2}= \pm 8$. Reduction $\bmod 5$ gives the contradiction $\left(\frac{ \pm 2}{5}\right)=+1$. Thus \mathfrak{p}_{2} is not primcipal. On the other hand, $\left(\frac{9+\sqrt{65}}{2}\right)=\mathfrak{p}_{2}^{2}$ shows that $\mathfrak{p}_{2}^{2} \sim(1)$, and since $\left[\mathfrak{p}_{2}^{\prime}\right]=\left[\mathfrak{p}_{2}\right]^{-1}=$ $\left[\mathfrak{p}_{2}\right]$, the class group has order 2 and is generated by $\left[\mathfrak{p}_{2}\right]$.
(5) Compute the class number of $\mathbb{Q}(\sqrt{221})$.

The only prime ideals with norm less than the Gauss bound are (2), $\mathfrak{p}_{5}=(5,1+\sqrt{221})$, and $\mathfrak{p}_{5}^{\prime}$. Clearly $\mathfrak{p}_{5}^{2}=(14-\sqrt{221})$ is principal. What about \mathfrak{p}_{5} ? If $\mathfrak{p}_{5} \sim(1)$, then $a^{2}-5 b^{2}= \pm 20$ must be solvable. Reduction $\bmod 13$ gives a contradiction. Thus $\operatorname{Cl}(K)=\left\langle\left[\mathfrak{p}_{5}\right]\right\rangle \simeq \mathbb{Z} / 2 \mathbb{Z}$.

