ALGEBRAIC NUMBER THEORY

HOMEWORK 2

(1) Let $a \in \mathbb{N}$ be a natural number. Find a basis (as a \mathbb{Z}-module) for the ideal $\mathfrak{a}=(a)$ in \mathcal{O}_{K}, where $K=\mathbb{Q}(\sqrt{m})$ is a quadratic number field. Hint: $\mathfrak{a}=[n, c+m \omega] ;$ make an educated guess what n, c, m might be, and prove your conjecture.

We claim that $\mathfrak{a}=[a, a \omega]$. To see this, observe that

$$
\begin{aligned}
(a) & =\left\{a \alpha: \alpha \in \mathcal{O}_{K}\right\} & & \text { by definition of }(a) \\
& =\{a(r+s \omega): r, s \in \mathbb{Z}\} & & \text { since }\{1, \omega\} \text { is an integral basis } \\
& =[a, a \omega] & &
\end{aligned}
$$

(2) Show directly that $(7,1+\sqrt{-6})=[7,1+\sqrt{-6}]$ in $R=\mathbb{Z}[\sqrt{-6}]$, i.e., that every R-linear combination $3 \alpha+(1+\sqrt{-6}) \beta$ with $\alpha, \beta \in R$ can already be written in the form $7 a+(1+\sqrt{-6}) b$ with $a, b \in \mathbb{Z}$.

Clearly $[7,1+\sqrt{-6}] \subseteq(7,1+\sqrt{-6})$. Let us prove the converse. We have

$$
\begin{aligned}
7 \alpha+(1+\sqrt{-6}) \beta & =7(a+b \sqrt{-6})+(1+\sqrt{-6})(c+d \sqrt{-6}) \\
& =7 a+7 b \sqrt{-6}+c(1+\sqrt{-6})+d \sqrt{-6}-6 d \\
& =7(a-b-d)+7 b+7 b \sqrt{-6}+c(1+\sqrt{-6})++d \sqrt{-6} d \\
& =7(a-b-d)+(1+\sqrt{-6})(7 b+c+d)
\end{aligned}
$$

and this shows that every element of the ideal $(7,1+\sqrt{-6})$ can be written as a \mathbb{Z}-linear (not just \mathcal{O}_{K}-linear, which follows from the definition of an ideal) combination of 7 and $1+\sqrt{-6}$.
(3) Let $K=\mathbb{Q}(\sqrt{m})$ be a quadratic number field, where m is squarefree. Prove the following:

- If $m \equiv 2 \bmod 4$ then $2 \mathcal{O}_{K}=(2, \sqrt{m})^{2}$.
- If $m \equiv 3 \bmod 4$ then $2 \mathcal{O}_{K}=(2,1+\sqrt{m})^{2}$.
- If $m \equiv 1 \bmod 8$ then $2 \mathcal{O}_{K}=\mathfrak{a} \mathfrak{a}^{\prime}$, where $\mathfrak{a}=\left(2, \frac{1+\sqrt{m}}{2}\right)$ and $\mathfrak{a} \neq \mathfrak{a}^{\prime}$.
- If $m \equiv 5 \bmod 8$ then $2 \mathcal{O}_{K}$ is prime.

These are straightforward calculations.

- $m \equiv 2 \bmod 4:$ then

$$
(2, \sqrt{m})^{2}=(4,2 \sqrt{m}, m)=(2)\left(2, \sqrt{m}, \frac{m}{2}\right)=(2)
$$

since $\frac{m}{2}$ is odd.

- $m \equiv 3 \bmod 4:$ then

$$
\begin{aligned}
(2,1+\sqrt{m})^{2} & =(2,1+\sqrt{m})(2,1-\sqrt{m}) \\
& =(2)\left(2,1+\sqrt{m}, \frac{1-m}{4}\right)=(2)
\end{aligned}
$$

since $\frac{1-m}{2}$ is odd.

- $m \equiv 1 \bmod 8$: then

$$
\mathfrak{a} \mathfrak{a}^{\prime}=(2)\left(2, \omega, \omega^{\prime}, \frac{1-m}{2}\right)=(2)
$$

since $\omega+\omega^{\prime}=1$.

- $m \equiv 5 \bmod 8:$ if (2) is not prime, then $2=\mathfrak{a} \mathfrak{a}^{\prime}$ for $\mathfrak{a}=[a, b+c \omega]$. Since $a c=N \mathfrak{a}=2$, we must have $a=2$ and $c=1$ (if $a=1$, then $1 \in \mathfrak{a}$, which is impossible). Thus $\mathfrak{a}=[2, b+\omega]$ with $2 \mid N(b+\omega)$. The last relation yields $(2 b+1)^{2}-m \equiv 0 \bmod 8$, hence $m \equiv 1 \bmod 8$: contradiction.
(4) Let $R=\mathbb{Z}[X]$, and consider $\mathfrak{a}=(2, X)$. Show that there does not exist an ideal $\mathfrak{b} \neq(0)$ in R such that $\mathfrak{a b}$ is principal. (I haven't thought of a simple argument; I don't even know for sure that the result is true.)

Let $\mathfrak{a}=(2, X)$, and assume that there is an ideal \mathfrak{b} and a polynomial $f \in \mathbb{Z}[X]$ such that $\mathfrak{a b}=(f)$. Let $b \in \mathfrak{b}$; we claim that $f \mid b$. In fact, we see that $(2, X) b \subseteq(f)$, hence $2 b \in(f)$ and $X b \in f$. Thus $f \mid 2 b$ and $f \mid X b$. But 2 and X are distinct prime elements in the UFD $\mathbb{Z}[X]$ (because $\mathbb{Z}[X] /(2) \simeq \mathbb{Z} / 2 \mathbb{Z}[X]$ and $\mathbb{Z}[X] /(X) \simeq \mathbb{Z}$ are integral domains), hence coprime, so $f \mid \operatorname{gcd}(2 b, X b)=b \operatorname{gcd}(2, X)=b$. (Warning: we have $\operatorname{gcd}(2, X)=1$, but $(2, X) \neq(1)$; the gcd only generates the ideal in a PID.) Thus $\mathfrak{b}=(f) \mathfrak{c}$ for some ideal \mathfrak{c} in $\mathbb{Z}[X]$. This gives $\mathfrak{a c}(f)=(f)$, hence $\mathfrak{a c}=(1)$ (we can cancel principal ideals in domains). But then $(1)=\mathfrak{a c} \subseteq \mathfrak{a}(1)=\mathfrak{a}$, hence $\mathfrak{a}=(1)$. This is false, however: if we had $1=2 r+s X$ for ring elements r, s, then plugging in $X=0$ shows $2 r=1$, which is nonsense since 2 is a prime, not a unit, in $\mathbb{Z}[X]$.

