
ALGEBRAIC NUMBER THEORY

MIDTERM 2

(1) Let R be a domain, and let a, b, c ∈ R be elements with (a, b) = 1. Show
that (a, bc) = (a, c).

I meant to write (a, b) = (1); in any case it should be clear that in
general domains, gcd’s need not exist. This means that you are not allowed
to assume that (a, c) = (d) is principal.

Clearly (a, bc) ⊆ (a, c). For showing the converse, observe that there are
r, s ∈ R with ar + bs = 1. Multiplying through by c gives c = acr + bcs,
hence c ∈ (a, bc). Thus a ∈ (a, bc) and c ∈ (a, bc).

Here’s a different proof: we have

(a, c) = (a, b)(a, c) = (a2, ab, ac, bc) ⊆ (a, bc).

(2) Show that 10 = 2 · 5 = −
√
−10 ·

√
−10 is an example of nonunique factor-

ization in R = Z[
√
−10 ].

Since the only units in R are ±1, the factors do not differ by units. We
claim that 2 is irreducible. In fact, assume that 2 = αβ; taking norms gives
4 = NαNβ.

If Nα = 2 for α = a + b
√
−10, then a2 + 10b2 = 2: contradiction. Thus

Nα = 1 or Nβ = 1, and this implies that α or β is a unit. This means that
2 is irreducible.

Now 2 |
√

10 ·
√

10, but 2 -
√

10; this implies that 2 is not prime. But
since irreducibles are primes in UFDs, the domain Z[

√
10 ] cannot be a

UFD.

(3) Find the prime ideal factorizations of (2) and (1+
√

17
2 ) in Q(

√
17 ).

We have (2) = p2p
′
2 with p2 = (2, ω) and ω = 1+

√
17

2 . Since Nω = −4,
the ideal (ω) is one of p2

2, (p′2)
2 or p2p

′
2 = (2). The last case is impossible,

since ω is not divisible by 2. Since ω ∈ p2, we must have (ω) = p2
2.

(4) Let p ≡ 3 mod 4 be a prime, and let (t, u) be a positive solution of the Pell
equation t2 − pu2 = 1. Show that if u is even, then t + u

√
p is a square in

Q(
√

p ).
Hint: show that there must be a “smaller” solution (a, b) of the Pell

equation and consider a + b
√

p.

We have pu2 = (t − 1)(t + 1). Since 2 | u, t is odd, and we easily find
gcd(t−1, t+1) = 2. But then t+1 = 2a2, t−1 = 2pb2 or t+1 = 2pa2, t−1 =
2b2. The second case leads to n2 − pa2 = −1, which gives b2 ≡ −1 mod p:
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contradiction. Thus we are in the first case and have a2 − pb2 = 1. Note
that a2 + pb2 = t and u = 2ab. But then (a + b

√
p )2 = t + u

√
p.

(5) Let p be an odd prime, m a squarefree integer not divisible by p, and assume
that m ≡ x2 mod p. Show that pp′ = (p) for the ideals p = (p, x +

√
m )

and p′ = (p, x−
√

m ).

Write x2 −m = pt; then we have

pp′ = (p, x +
√

m )(p, x−
√

m )

= (p2, p(x +
√

m ), p(x−
√

m ), x2 −m)

= (p)(p, x +
√

m,x−
√

m, t).

Now there are two cases:
(a) p | x. Then p - t, hence the second ideal contains the coprie elements

p and t, hence is the unit ideal.
(b) p - x: then the second ideal contains p and 2x, hence 1.
Thus pp′ = (p) in both cases.

(6) Consider the quadratic number field K = Q(
√

46 ).
(a) List all prime ideals in OK with norm ≤ 7. We have disc K = −4 · 46.

Thus (2) = p2
2 for p2 = (2,

√
46 ). Moreover, 46 ≡ 12 mod 3 and 46 ≡

12 mod 5 and 46 ≡ 22 mod 7 shows that the primes 3, 5 and 7 split.
We find p3 = (3, 1 +

√
46 ), p5 = (5, 1 +

√
46 ), and p7 = (7, 2 +

√
46 ).

(b) Find the prime ideal factorizations of (2 +
√

46 ), (7 +
√

46 ) and (8 +√
46 ).

(2 +
√

46 ) = p2p
′
3p7; (7 +

√
46 ) = p3; (8 +

√
46 ) = p2p

′
3
2.

(c) Find a unit ε > 1 in OK . Clearly α = 8+
√

46
(7−

√
46 )2

generates p2. Since

(2) = p2
2, the element ε = 1

2α2 must be a unit. Since 2 is not a square
in K, ε cannot be trivial.

(d) Explain how to show that your ε is fundamental (no calculations; just
explain the method). Assume that 1 < ε = ηm. Then m ≤ log ε

log
√

46
.

Test all possible m (check the notes for detail).

(e) Show that K has class number 1.

The Gauss bound is µK =
√

4 · 46/5 < 7; thus we need to show that
all ideals with norm < 7 are principal. We already know that p2 = (α)
and p3 = (7 +

√
46 ) as well as p′3 are principal. The factorization

(6 +
√

46 ) = p2p5 shows that p5 and p′5 are principal. Finally it
follows from (2 +

√
46 ) = p2p

′
3p7 that p7 and p′7 are principal.

Note that the Gauss bound tells us something about ideals in certain
ideal classes. It most certainly does not claim that all ideals have norm
< µK .
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(7) Compute the ideal class group of K = Q(
√
−33 ).

We have disc K = −4·33, hence the Gauss bound is µK =
√

4 · 33/3 < 7.
We find (2) = p2

2 for p2 = (2, 1 +
√
−33 ); (3) = p2

3 for p3 = (3,
√
−33 );

(−33
5 ) = −1, so 5 is inert; −33 ≡ 2 ≡ 32 mod 7 gives (7) = p7p

′
7 for

p7 = (7, 3 +
√
−33 ).

Now we claim that the ideals p2, p3, p7, p2p3, p2p7 and p3p7 are not
principal. This follows from the fact that the equations x2 + 33y2 =
2, 3, 7, 6, 14, 21 do not have integral solutions. This proves that the four
ideal classes [(1)], [p2], [p3], [p2p3] are pairwise distinct. Moreover, they all
have order dividing 2: this is clear from p2

2 = (2)nd p2
3 = (3).

Now (3 +
√
−33 ) = p2p3p7 shows that p2p3p7 ∼ 1; multiplying through

by p2p3 shows that p7 ∼ p2
2p

2
3p7 ∼ p2p3. Taking conjugates gives p7 ∼ p2p3.

Thus Cl(K) = {[(1)], [p2], [p3], [p2p3]} ' Z/2Z⊕ Z/2Z.


