ALGEBRAIC NUMBER THEORY

MIDTERM 2

(1) Let R be a domain, and let $a, b, c \in R$ be elements with (a, b) = 1. Show that (a, bc) = (a, c).

I meant to write (a, b) = (1); in any case it should be clear that in general domains, gcd's need not exist. This means that you are not allowed to assume that (a, c) = (d) is principal.

Clearly $(a, bc) \subseteq (a, c)$. For showing the converse, observe that there are $r, s \in R$ with ar + bs = 1. Multiplying through by c gives c = acr + bcs, hence $c \in (a, bc)$. Thus $a \in (a, bc)$ and $c \in (a, bc)$.

Here's a different proof: we have

$$(a,c) = (a,b)(a,c) = (a^2, ab, ac, bc) \subseteq (a, bc).$$

(2) Show that $10 = 2 \cdot 5 = -\sqrt{-10} \cdot \sqrt{-10}$ is an example of nonunique factorization in $R = \mathbb{Z}[\sqrt{-10}]$.

Since the only units in R are ± 1 , the factors do not differ by units. We claim that 2 is irreducible. In fact, assume that $2 = \alpha\beta$; taking norms gives $4 = N\alpha N\beta$.

If $N\alpha = 2$ for $\alpha = a + b\sqrt{-10}$, then $a^2 + 10b^2 = 2$: contradiction. Thus $N\alpha = 1$ or $N\beta = 1$, and this implies that α or β is a unit. This means that 2 is irreducible.

Now $2 \mid \sqrt{10} \cdot \sqrt{10}$, but $2 \nmid \sqrt{10}$; this implies that 2 is not prime. But since irreducibles are primes in UFDs, the domain $\mathbb{Z}[\sqrt{10}]$ cannot be a UFD.

(3) Find the prime ideal factorizations of (2) and $\left(\frac{1+\sqrt{17}}{2}\right)$ in $\mathbb{Q}(\sqrt{17})$.

We have $(2) = \mathfrak{p}_2 \mathfrak{p}'_2$ with $\mathfrak{p}_2 = (2, \omega)$ and $\omega = \frac{1+\sqrt{17}}{2}$. Since $N\omega = -4$, the ideal (ω) is one of \mathfrak{p}_2^2 , $(\mathfrak{p}'_2)^2$ or $\mathfrak{p}_2\mathfrak{p}'_2 = (2)$. The last case is impossible, since ω is not divisible by 2. Since $\omega \in \mathfrak{p}_2$, we must have $(\omega) = \mathfrak{p}_2^2$.

(4) Let $p \equiv 3 \mod 4$ be a prime, and let (t, u) be a positive solution of the Pell equation $t^2 - pu^2 = 1$. Show that if u is even, then $t + u\sqrt{p}$ is a square in $\mathbb{Q}(\sqrt{p})$.

Hint: show that there must be a "smaller" solution (a, b) of the Pell equation and consider $a + b\sqrt{p}$.

We have $pu^2 = (t-1)(t+1)$. Since $2 \mid u, t$ is odd, and we easily find gcd(t-1,t+1) = 2. But then $t+1 = 2a^2, t-1 = 2pb^2$ or $t+1 = 2pa^2, t-1 = 2b^2$. The second case leads to $n^2 - pa^2 = -1$, which gives $b^2 \equiv -1 \mod p$:

MIDTERM 2

contradiction. Thus we are in the first case and have $a^2 - pb^2 = 1$. Note that $a^2 + pb^2 = t$ and u = 2ab. But then $(a + b\sqrt{p})^2 = t + u\sqrt{p}$.

(5) Let p be an odd prime, m a squarefree integer not divisible by p, and assume that $m \equiv x^2 \mod p$. Show that $\mathfrak{pp}' = (p)$ for the ideals $\mathfrak{p} = (p, x + \sqrt{m})$ and $\mathfrak{p}' = (p, x - \sqrt{m})$.

Write $x^2 - m = pt$; then we have

$$pp' = (p, x + \sqrt{m})(p, x - \sqrt{m}) = (p^2, p(x + \sqrt{m}), p(x - \sqrt{m}), x^2 - m) = (p)(p, x + \sqrt{m}, x - \sqrt{m}, t).$$

Now there are two cases:

- (a) $p \mid x$. Then $p \nmid t$, hence the second ideal contains the coprie elements p and t, hence is the unit ideal.
- (b) $p \nmid x$: then the second ideal contains p and 2x, hence 1. Thus pp' = (p) in both cases.
- (6) Consider the quadratic number field $K = \mathbb{Q}(\sqrt{46})$.
 - (a) List all prime ideals in \mathcal{O}_K with norm ≤ 7 . We have disc $K = -4 \cdot 46$.

Thus $(2) = \mathfrak{p}_2^2$ for $\mathfrak{p}_2 = (2, \sqrt{46})$. Moreover, $46 \equiv 1^2 \mod 3$ and $46 \equiv 1^2 \mod 5$ and $46 \equiv 2^2 \mod 7$ shows that the primes 3, 5 and 7 split. We find $\mathfrak{p}_3 = (3, 1 + \sqrt{46}), \mathfrak{p}_5 = (5, 1 + \sqrt{46}), \text{ and } \mathfrak{p}_7 = (7, 2 + \sqrt{46}).$

(b) Find the prime ideal factorizations of $(2 + \sqrt{46})$, $(7 + \sqrt{46})$ and $(8 + \sqrt{46})$.

$$(2+\sqrt{46}) = \mathfrak{p}_2\mathfrak{p}_3'\mathfrak{p}_7; \ (7+\sqrt{46}) = \mathfrak{p}_3; \ (8+\sqrt{46}) = \mathfrak{p}_2\mathfrak{p}_3'^2.$$

- (c) Find a unit $\varepsilon > 1$ in \mathcal{O}_K . Clearly $\alpha = \frac{8+\sqrt{46}}{(7-\sqrt{46})^2}$ generates \mathfrak{p}_2 . Since $(2) = \mathfrak{p}_2^2$, the element $\varepsilon = \frac{1}{2}\alpha^2$ must be a unit. Since 2 is not a square in K, ε cannot be trivial.
- (d) Explain how to show that your ε is fundamental (no calculations; just explain the method). Assume that $1 < \varepsilon = \eta^m$. Then $m \leq \frac{\log \varepsilon}{\log \sqrt{46}}$.

Test all possible m (check the notes for detail).

(e) Show that K has class number 1.

The Gauss bound is $\mu_K = \sqrt{4 \cdot 46/5} < 7$; thus we need to show that all ideals with norm < 7 are principal. We already know that $\mathfrak{p}_2 = (\alpha)$ and $\mathfrak{p}_3 = (7 + \sqrt{46})$ as well as \mathfrak{p}'_3 are principal. The factorization $(6 + \sqrt{46}) = \mathfrak{p}_2\mathfrak{p}_5$ shows that \mathfrak{p}_5 and \mathfrak{p}'_5 are principal. Finally it follows from $(2 + \sqrt{46}) = \mathfrak{p}_2\mathfrak{p}'_3\mathfrak{p}_7$ that \mathfrak{p}_7 and \mathfrak{p}'_7 are principal.

Note that the Gauss bound tells us something about ideals in certain ideal classes. It most certainly does not claim that all ideals have norm $< \mu_K$.

 $\mathbf{2}$

(7) Compute the ideal class group of $K = \mathbb{Q}(\sqrt{-33})$.

We have disc K = -4.33, hence the Gauss bound is $\mu_K = \sqrt{4.33/3} < 7$. We find (2) = \mathfrak{p}_2^2 for $\mathfrak{p}_2 = (2, 1 + \sqrt{-33})$; (3) = \mathfrak{p}_3^2 for $\mathfrak{p}_3 = (3, \sqrt{-33})$; $(\frac{-33}{5}) = -1$, so 5 is inert; $-33 \equiv 2 \equiv 3^2 \mod 7$ gives (7) = $\mathfrak{p}_7 \mathfrak{p}_7'$ for $\mathfrak{p}_7 = (7, 3 + \sqrt{-33})$.

Now we claim that the ideals \mathfrak{p}_2 , \mathfrak{p}_3 , \mathfrak{p}_7 , $\mathfrak{p}_2\mathfrak{p}_3$, $\mathfrak{p}_2\mathfrak{p}_7$ and $\mathfrak{p}_3\mathfrak{p}_7$ are not principal. This follows from the fact that the equations $x^2 + 33y^2 = 2, 3, 7, 6, 14, 21$ do not have integral solutions. This proves that the four ideal classes [(1)], [\mathfrak{p}_2], [\mathfrak{p}_3], [$\mathfrak{p}_2\mathfrak{p}_3$] are pairwise distinct. Moreover, they all have order dividing 2: this is clear from $\mathfrak{p}_2^2 = (2)$ nd $\mathfrak{p}_3^2 = (3)$.

Now $(3 + \sqrt{-33}) = \mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_7$ shows that $\mathfrak{p}_2 \mathfrak{p}_3 \mathfrak{p}_7 \sim 1$; multiplying through by $\mathfrak{p}_2 \mathfrak{p}_3$ shows that $\mathfrak{p}_7 \sim \mathfrak{p}_2^2 \mathfrak{p}_3^2 \mathfrak{p}_7 \sim \mathfrak{p}_2 \mathfrak{p}_3$. Taking conjugates gives $\mathfrak{p}_7 \sim \mathfrak{p}_2 \mathfrak{p}_3$. Thus $\operatorname{Cl}(K) = \{[(1)], [\mathfrak{p}_2], [\mathfrak{p}_3], [\mathfrak{p}_2 \mathfrak{p}_3]\} \simeq \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$.