ALGEBRAIC NUMBER THEORY

MIDTERM 2

(1) Let R be a domain, and let $a, b, c \in R$ be elements with $(a, b)=1$. Show that $(a, b c)=(a, c)$.

I meant to write $(a, b)=(1)$; in any case it should be clear that in general domains, gcd's need not exist. This means that you are not allowed to assume that $(a, c)=(d)$ is principal.

Clearly $(a, b c) \subseteq(a, c)$. For showing the converse, observe that there are $r, s \in R$ with $a r+b s=1$. Multiplying through by c gives $c=a c r+b c s$, hence $c \in(a, b c)$. Thus $a \in(a, b c)$ and $c \in(a, b c)$.

Here's a different proof: we have

$$
(a, c)=(a, b)(a, c)=\left(a^{2}, a b, a c, b c\right) \subseteq(a, b c)
$$

(2) Show that $10=2 \cdot 5=-\sqrt{-10} \cdot \sqrt{-10}$ is an example of nonunique factorization in $R=\mathbb{Z}[\sqrt{-10}]$.

Since the only units in R are ± 1, the factors do not differ by units. We claim that 2 is irreducible. In fact, assume that $2=\alpha \beta$; taking norms gives $4=N \alpha N \beta$.

If $N \alpha=2$ for $\alpha=a+b \sqrt{-10}$, then $a^{2}+10 b^{2}=2$: contradiction. Thus $N \alpha=1$ or $N \beta=1$, and this implies that α or β is a unit. This means that 2 is irreducible.

Now $2 \mid \sqrt{10} \cdot \sqrt{10}$, but $2 \nmid \sqrt{10}$; this implies that 2 is not prime. But since irreducibles are primes in UFDs, the domain $\mathbb{Z}[\sqrt{10}]$ cannot be a UFD.
(3) Find the prime ideal factorizations of (2) and $\left(\frac{1+\sqrt{17}}{2}\right)$ in $\mathbb{Q}(\sqrt{17})$.

We have $(2)=\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}$ with $\mathfrak{p}_{2}=(2, \omega)$ and $\omega=\frac{1+\sqrt{17}}{2}$. Since $N \omega=-4$, the ideal (ω) is one of $\mathfrak{p}_{2}^{2},\left(\mathfrak{p}_{2}^{\prime}\right)^{2}$ or $\mathfrak{p}_{2} \mathfrak{p}_{2}^{\prime}=(2)$. The last case is impossible, since ω is not divisible by 2 . Since $\omega \in \mathfrak{p}_{2}$, we must have $(\omega)=\mathfrak{p}_{2}^{2}$.
(4) Let $p \equiv 3 \bmod 4$ be a prime, and let (t, u) be a positive solution of the Pell equation $t^{2}-p u^{2}=1$. Show that if u is even, then $t+u \sqrt{p}$ is a square in $\mathbb{Q}(\sqrt{p})$.

Hint: show that there must be a "smaller" solution (a, b) of the Pell equation and consider $a+b \sqrt{p}$.

We have $p u^{2}=(t-1)(t+1)$. Since $2 \mid u, t$ is odd, and we easily find $\operatorname{gcd}(t-1, t+1)=2$. But then $t+1=2 a^{2}, t-1=2 p b^{2}$ or $t+1=2 p a^{2}, t-1=$ $2 b^{2}$. The second case leads to $n^{2}-p a^{2}=-1$, which gives $b^{2} \equiv-1 \bmod p$:
contradiction. Thus we are in the first case and have $a^{2}-p b^{2}=1$. Note that $a^{2}+p b^{2}=t$ and $u=2 a b$. But then $(a+b \sqrt{p})^{2}=t+u \sqrt{p}$.
(5) Let p be an odd prime, m a squarefree integer not divisible by p, and assume that $m \equiv x^{2} \bmod p$. Show that $\mathfrak{p p}^{\prime}=(p)$ for the ideals $\mathfrak{p}=(p, x+\sqrt{m})$ and $\mathfrak{p}^{\prime}=(p, x-\sqrt{m})$.

Write $x^{2}-m=p t$; then we have

$$
\begin{aligned}
\mathfrak{p p}^{\prime} & =(p, x+\sqrt{m})(p, x-\sqrt{m}) \\
& =\left(p^{2}, p(x+\sqrt{m}), p(x-\sqrt{m}), x^{2}-m\right) \\
& =(p)(p, x+\sqrt{m}, x-\sqrt{m}, t) .
\end{aligned}
$$

Now there are two cases:
(a) $p \mid x$. Then $p \nmid t$, hence the second ideal contains the coprie elements p and t, hence is the unit ideal.
(b) $p \nmid x$: then the second ideal contains p and $2 x$, hence 1 .

Thus $\mathfrak{p p}^{\prime}=(p)$ in both cases.
(6) Consider the quadratic number field $K=\mathbb{Q}(\sqrt{46})$.
(a) List all prime ideals in \mathcal{O}_{K} with norm ≤ 7. We have disc $K=-4 \cdot 46$.

Thus $(2)=\mathfrak{p}_{2}^{2}$ for $\mathfrak{p}_{2}=(2, \sqrt{46})$. Moreover, $46 \equiv 1^{2} \bmod 3$ and $46 \equiv$ $1^{2} \bmod 5$ and $46 \equiv 2^{2} \bmod 7$ shows that the primes 3,5 and 7 split. We find $\mathfrak{p}_{3}=(3,1+\sqrt{46}), \mathfrak{p}_{5}=(5,1+\sqrt{46})$, and $\mathfrak{p}_{7}=(7,2+\sqrt{46})$.
(b) Find the prime ideal factorizations of $(2+\sqrt{46}),(7+\sqrt{46})$ and $(8+$ $\sqrt{46}$).
$(2+\sqrt{46})=\mathfrak{p}_{2} \mathfrak{p}_{3}^{\prime} \mathfrak{p}_{7} ;(7+\sqrt{46})=\mathfrak{p}_{3} ;(8+\sqrt{46})=\mathfrak{p}_{2} \mathfrak{p}_{3}^{\prime 2}$.
(c) Find a unit $\varepsilon>1$ in \mathcal{O}_{K}. Clearly $\alpha=\frac{8+\sqrt{46}}{(7-\sqrt{46})^{2}}$ generates \mathfrak{p}_{2}. Since $(2)=\mathfrak{p}_{2}^{2}$, the element $\varepsilon=\frac{1}{2} \alpha^{2}$ must be a unit. Since 2 is not a square in K, ε cannot be trivial.
(d) Explain how to show that your ε is fundamental (no calculations; just explain the method). Assume that $1<\varepsilon=\eta^{m}$. Then $m \leq \frac{\log \varepsilon}{\log \sqrt{46}}$.

Test all possible m (check the notes for detail).
(e) Show that K has class number 1 .

The Gauss bound is $\mu_{K}=\sqrt{4 \cdot 46 / 5}<7$; thus we need to show that all ideals with norm <7 are principal. We already know that $\mathfrak{p}_{2}=(\alpha)$ and $\mathfrak{p}_{3}=(7+\sqrt{46})$ as well as $\mathfrak{p}_{3}^{\prime}$ are principal. The factorization $(6+\sqrt{46})=\mathfrak{p}_{2} \mathfrak{p}_{5}$ shows that \mathfrak{p}_{5} and $\mathfrak{p}_{5}^{\prime}$ are principal. Finally it follows from $(2+\sqrt{46})=\mathfrak{p}_{2} \mathfrak{p}_{3}^{\prime} \mathfrak{p}_{7}$ that \mathfrak{p}_{7} and $\mathfrak{p}_{7}^{\prime}$ are principal.

Note that the Gauss bound tells us something about ideals in certain ideal classes. It most certainly does not claim that all ideals have norm $<\mu_{K}$.
(7) Compute the ideal class group of $K=\mathbb{Q}(\sqrt{-33})$.

We have disc $K=-4 \cdot 33$, hence the Gauss bound is $\mu_{K}=\sqrt{4 \cdot 33 / 3}<7$. We find (2) $=\mathfrak{p}_{2}^{2}$ for $\mathfrak{p}_{2}=(2,1+\sqrt{-33}) ;(3)=\mathfrak{p}_{3}^{2}$ for $\mathfrak{p}_{3}=(3, \sqrt{-33})$; $\left(\frac{-33}{5}\right)=-1$, so 5 is inert; $-33 \equiv 2 \equiv 3^{2} \bmod 7$ gives $(7)=\mathfrak{p}_{7} \mathfrak{p}_{7}^{\prime}$ for $\mathfrak{p}_{7}=(7,3+\sqrt{-33})$.

Now we claim that the ideals $\mathfrak{p}_{2}, \mathfrak{p}_{3}, \mathfrak{p}_{7}, \mathfrak{p}_{2} \mathfrak{p}_{3}, \mathfrak{p}_{2} \mathfrak{p}_{7}$ and $\mathfrak{p}_{3} \mathfrak{p}_{7}$ are not principal. This follows from the fact that the equations $x^{2}+33 y^{2}=$ $2,3,7,6,14,21$ do not have integral solutions. This proves that the four ideal classes $[(1)],\left[\mathfrak{p}_{2}\right],\left[\mathfrak{p}_{3}\right],\left[\mathfrak{p}_{2} \mathfrak{p}_{3}\right]$ are pairwise distinct. Moreover, they all have order dividing 2: this is clear from $\mathfrak{p}_{2}^{2}=(2)$ nd $\mathfrak{p}_{3}^{2}=(3)$.

Now $(3+\sqrt{-33})=\mathfrak{p}_{2} \mathfrak{p}_{3} \mathfrak{p}_{7}$ shows that $\mathfrak{p}_{2} \mathfrak{p}_{3} \mathfrak{p}_{7} \sim 1$; multiplying through by $\mathfrak{p}_{2} \mathfrak{p}_{3}$ shows that $\mathfrak{p}_{7} \sim \mathfrak{p}_{2}^{2} \mathfrak{p}_{3}^{2} \mathfrak{p}_{7} \sim \mathfrak{p}_{2} \mathfrak{p}_{3}$. Taking conjugates gives $\mathfrak{p}_{7} \sim \mathfrak{p}_{2} \mathfrak{p}_{3}$. Thus $\operatorname{Cl}(K)=\left\{[(1)],\left[\mathfrak{p}_{2}\right],\left[\mathfrak{p}_{3}\right],\left[\mathfrak{p}_{2} \mathfrak{p}_{3}\right]\right\} \simeq \mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$.

