
ALGEBRAIC NUMBER THEORY

FRANZ LEMMERMEYER

1. Algebraic Integers

Let A be a subring of a commutative ring R. An element x ∈ R is integral over
A if there exist a0, . . . , an−1 ∈ A such that xn + an−1x

n−1 + . . . + a0 = 0.

Example. Take A = Z and R = A, the field of algebraic numbers. Then x ∈ A is
integral over Z if there exist integers a0, . . . , an−1 such that xn + an−1x

n−1 + . . . +
a0 = 0. These elements are called algebraic integers.

Theorem 1.1. With the notation as above, the following are equivalent:
(1) x is integral over A;
(2) the ring A[x] is a finitely generated A-module;
(3) there exists a subring B of R, finitely generated as an A-module, such that

A[x] ⊆ B.

Let A be a subring of R; we say that R is integral over A if every x ∈ R is
integral over A.

Lemma 1.2. Let R be integral over A, and let θ : R −→ S be a ring epimorphism.
Then S is integral over θ(A).

Theorem 1.3. Let R be a domain, integral over some subring A. If a is an ideal
in R, then a ∩A 6= ∅.

If every element of R which is integral over A belongs to A, then A is said to be
integrally closed in R.

If A is an integral domain with quotient field K, and if A is integrally closed in
K, then we say that A is integrally closed.

Proposition 1.4. Let A be a subring of R and let x1, . . . , xn ∈ R. If x1 is integral
over A, x2 integral over A[x1], etc. then A[x1, . . . , xn] is a finitely generated A-
module.

Integrality is transitive:

Proposition 1.5. Let A ⊆ B ⊆ C be rings. If C is integral over B and B is
integral over A, then C is integral over A.

Proposition 1.6. Let A be subring of R, and let B be the set of all elements
x ∈ R that are integral over A. Then B is a subring of R, integrally closed in R,
and integral over A.

This ring B is called the integral closure of A in R.

Proposition 1.7. Let R be a domain integrally closed over A. Then R is a field
if and only if A is a field.
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Corollary 1.8. Let R be integral over A and let p be a prime ideal in R. Then p
is a maximal ideal of R if and only if p ∩A is a maximal ideal of A.

Theorem 1.9. Let A be an integrally closed domain with quotient field K. Let
L be an algebraic extension of K. If x ∈ L is integral over A, then its minimal
polynomial over K is an element of A[T ]. All conjugates of x over K are also
integral over A. If B is the integral closure of A in L, then B ∩K = A.

Proposition 1.10. Let A be an integrally closed domain with quotient field K,
and let L/K be an algebraic extension. Let B denote the integral closure of A in
L. Then every element of L has the form b/a, where b ∈ B and a ∈ A \ {0}.

Proposition 1.11. Every UFD is integrally closed.

In particular, PIDs are integrally closed.
For a number field K, let ZK denote the ring of algebraic integers in K. We

know that ZK is integrally closed, and that ZK ∩ Q = Z. We also know that if
α ∈ ZK , then Trα and Nα are integers.

Proposition 1.12. Let A be a domain satisfying the ascending chain condition for
principal ideals: any increasing chain Aa1 ⊆ Aa2 ⊆ . . . ⊆ Aan ⊆ . . . of principal
ideals of A becomes stationary, i.e. there is an n ∈ N such that Aan = Aan+1 = . . ..
Then every nonunit a ∈ A can be written as a product of irreducible elements.

Proposition 1.13. Let A be a domain in which every element is a product of
irreducible elements. Then the following statements are equivalent:

(1) if p1 · · · pr = q1 · · · qs are factorizations into irreducible elements, then s = r
and the qi can be reindexed in such a way that pi = uiqi for suitable units
ui ∈ R.

(2) if p is irreducible and p | ab for a, b ∈ A, then p | a or p | b

The second condition can be expressed by saying that irreducibles are prime.
Note that, in my book, an irreducible element a ∈ R is an element with the property
that if a = rs for r, s ∈ R, then r or s is a unit (i.e. there are only trivial
factorizations of a); an element p ∈ R is called prime if p | ab for any a, b ∈ R
always implies that p | a or p | b.

Proposition 1.14. An algebraic integer is a unit if and only if it has norm ±1.
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2. Algebraic Preliminaries

In the following, all rings are commutative and have a unit. For a squarefree
integer m ∈ Z\{0, 1} the set k = Q(

√
m ) = {a+b

√
m : a, b ∈ Q} forms a field called

a quadratic number field. We say that k is real or complex quadratic according as
m > 0 or m < 0.

The element α = a + b
√

m ∈ k is a root of the quadratic polynomial Pα(x) =
x2 − 2ax + a2 −mb2 ∈ Q[x]; its second root α′ = a− b

√
m is called the conjugate

of α. We also define
N α = αα′ = a2 −mb2 the norm of α,
Trα = α + α′ = 2a the trace of α, and
disc(α) = (α− α′)2 = 4mb2 the discriminant of α.

The basic properties of norm and trace are

Proposition 2.1. For all α, β ∈ k we have N(αβ) = Nα Nβ and Tr(α + β) =
Trα + Tr β. Moreover Nα = 0 if and only if α = 0, Trα = 0 if and only if
α ∈ Q

√
m, and disc(α) = 0 if and only if α ∈ Q.

Proof. Left as an exercise. �

The map σ : k −→ k : α 7−→ σ(α) := α′ is called the nontrivial automorphism of
k/Q.

Exercise. The map σ : k −→ k is a ring homomorphism, i.e., we have σ(α + β) =
σ(α) + σ(β) and σ(αβ) = σ(α)σ(β) for all α, β ∈ k. Show that α ∈ k is rational if
and only if α = σ(α).

Since σ◦σ = id (the identity map), {id, σ} is a group of order 2 called the Galois
group1 of k/Q and denoted by Gal(k/Q).

Let k ⊆ K be fields; then K may be viewed as a k-vector space: the vectors are
the elements from K (they form an additive group), the scalars are the elements of
k, and the scalar multiplication is the restriction of the usual multiplication in K.
The dimension dimk K of K as a k-vector space is called the degree of K/k and is
denoted by (K : k).

Clearly Q(
√

m ) has degree 2 over Q: a basis is given by{1,
√

m} since every
element of K can be written uniquely as a Q-linear combination of 1 and

√
m.

1Évariste Galois (1811–1832), a French mathematician killed in a duel at the age of 20.
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3. Integers of Quadratic Fields

Let K = Q(
√

m ) be a quadratic extension with m squarefree. Elements of K
have the form a + b

√
m with a, b ∈ Q. The conjugate of a + b

√
m is a− b

√
m.

Lemma 3.1. We have a+b
√

m ∈ ZK if and only if u = 2a and v = 2b are integers
with u2 −mv2 ≡ 0 mod 4.

Proposition 3.2. We have

ZK =

{
{a + b

√
m : a, b ∈ Z} if m ≡ 2, 3 mod 4,

{a+b
√

m
2 : a ≡ b mod 2} if m ≡ 1 mod 4

Corollary 3.3. The ring ZK of integers in a quadratic number field K is a free
abelian group. If m ≡ 2, 3 mod 4, then {1,

√
m} is a basis of ZK ; if m ≡ 1 mod 4,

then {1, 1+
√

m
2 } is a basis of ZK .

Exercise. Consider the rings

Z[
√

5 ] ⊂ Z[ 1+
√

5
2 ] ⊂ Z[ 12 ,

√
5 ] ⊂ Q(

√
5 ).

Show that
• Z[

√
5 ] and Z[ 1+

√
5

2 ] are integral over Z.
• Z[ 12 ,

√
5 ] is not integral over Z, but is integral over Z[ 12 ].

• Z[
√

5 ] is not integrally closed.
• Z[ 1+

√
5

2 ] and Z[ 12 ,
√

5 ] are integrally closed.

Actually, more is true. Call a subring of K = Q(
√

5 ) an order if it contains Z and
has K as its quotient field. Then Z[ 1+

√
5

2 ] is the maximal order that is integral over
Z, and the minimal order that is integrally closed.
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4. Some History

Number Theory has a long history: already the Pythagoreans studied prime
numbers and perfect numbers, and Pythagorean triples like (3, 4, 5) are even older.
The most outstanding number theorists in ancient times was Diophantus of Alexan-
dria, who probably lived in the third century AD. His methods were closely studied
by Fermat and led to his conjecture that the diophantine equation xn + yn = zn

does not have a solution in natural numbers if n > 2. Fermat also came up with
results and conjectures that were explained much later by algebraic number theory.
His claim that primes p ≡ 1, 9 mod 20 can be written in the form p = x2 + 5y2

was studied and eventually proved by mathematicians such as Euler and Lagrange,
and it is connected with the fact that the field Q(

√
−5 ) has class number 2 (in the

language of binary quadratic forms: there are two nonequivalent quadratic forms
of discriminant −20, namely x2 + 5y2 and 2x2 + 2xy + 3y2).

Euler also introduced algebraic numbers in his proof that the diophantine equa-
tion y2 = x3 − 2 has (x, y) = (3, 5) as its only solution in natural numbers by
factoring the equation as x3 = (y +

√
−2 )(y −

√
−2 ).

The work of Euler, Lagrange and Legendre on quadratic forms were formed
into a beautiful (and, at the time, difficult and abstract) theory by Gauss in his
Disquisitiones Arithmeticae published in 1801. One of the main results of Gauss
was the first complete proof of the quadratic reciprocity law(p

q

)(q

p

)
= (−1)

p−1
2 · q−1

2 .

Gauss was working on a generalization of quadratic reciprocity to fourth powers
for years until he realized that in order to formulate a proper reciprocity law for
fourth powers, one had to work in the ring Z[

√
−1 ]. There, the reciprocity law can

be stated in the form [π

ρ

][ ρ

π

]
= (−1)

Nπ−1
4 ·Nρ−1

4 .

Here π and ρ are primes ≡ 1 mod (2 + 2i) in Z[i], and N denotes the norm. Gauss
published (parts of) these results only in 1828; ten years later Jacobi worked out
simple proofs of the cubic and quartic reciprocity laws, but Eisenstein published
them first in 1844. In an unpublished paper, Gauss also proved Fermat’s Last
Theorem for the exponent 3 using the fact that the ring Z[ 1+

√
−3

2 ] is a UFD.
Dirichlet invented analytic number theory, and among other results proved a

class number formula for the class number of binary quadratic forms, which we
interpret nowadays as a class number formula for quadratic number fields. He also
determined the rank of the unit group in rings of integers of algebraic number fields,
widely generalizing the result that the Pell equation X2 − dY 2 = 1 is solvable for
nonsquare integers d > 0.

Eisenstein and Kummer then started working on a reciprocity law for p-th power
residues, which lives in the ring Z[ζp] of the field Q(ζp) of p-th roots of unity. In
order to cope with nonunique factorization, Kummer introduced ideal numbers. He
succeded proving the reciprocity law for all regular primes, that is, primes with the
property that p does not divide the order of the class group of Q(ζp); Kummer
showed that this can be checked by computing the first p − 3 Bernoulli numbers.
He also saw that his methods could be applied to Fermat’s Last Theorem, and with
a lot of work he finally obtained proofs for all prime exponents below 100.
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Algebraic number theory in the modern sense starts with Dedekind: he replaced
Kummer’s ideal numbers by ideals, realized the importance of integral closure, and
proved that we have unique factorization into prime ideals in rings of integers in
algebraic number fields. Together with Weber he developed the theory of function
fields; the rational function field Fq(X) over finite fields had already been inves-
tigated by Gauss (unpublished), Serret and Dedekind, and its subring Fq[X] was
known to have many properties analogous to the ring of integers. The analogy
between function fields and number fields keeps inspiring number theorists to this
day.

Hilbert finally translated all the results obtained so far by Gauss, Dirichlet, and
Kummer into Dedekind’s language; in some sense, his report from 1896 completed
the classical era of algebraic number theory. About the same time, the axiomati-
zation of mathematics began with the emergence of the concept of abstract groups
and vector spaces. It took another 25 years until Emmy Noether finally came up
with the axioms that guarantee that a ring admits unique factorization into prime
ideals; such rings were called ‘Dedekind rings’ starting around 1950.

Hilbert also outlined a program for studying abelian extensions of number fields.
His program was worked out by his student Furtwängler between 1900 and 1910 and
generalized considerably by Takagi in 1920: class field theory was born. Takagi’s
results were streamlined by Hasse, and finally Artin completed class field theory
by finding a simple formulation of the general reciprocity law in abelian extensions
of number fields. Artin’s reciprocity law is an isomorphism between a class group
and a Galois group and, at first sight, seems to have nothing to do with the explicit
reciprocity laws derived by Gauss, Jacobi, Eisenstein, and Kummer.

The generalization of reciprocity laws to nonabelian extensions is the content of
Langlands’ program; there has been some progress in recent years: the Langlands
correspondence for GLn over the field of p-adic numbers was proved in 1998 by
Michael Harris and Richard Taylor, and Guy Henniart gave a second proof shortly
afterwards. Laurent Lafforgue proved the Langlands correspondence for function
fields and was awarded the Fields medal in 2002 for this result. The results of
Wiles may be seen as a small step in the proof of the Langlands correspondence for
number fields.
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5. Ideals

What is an ideal? Recall that a subset I of a ring R is called a subring if I
it is closed under the ring operations, that is, adding and multiplying elements of
I again produces elements of I. This is similar to the concepts of subgroups or
subspaces of vector spaces; what is different in the category of rings is that the
quotient R/I = {r + I : r ∈ R} in general is not a ring with respect to addition
(r + I) + (s + I) = r + s + I and multiplication (r + I) · (s + I) = rs + I. In fact,
this multiplication is in general not defined: if r + I = r′ + I and s + I = s′ + I,
i.e., if a = r − r′ ∈ I and b = s − s′ ∈ I, then r′s′ + I = (r − a)(s − b) + I =
rs + (ab− rb− sa) + I, and this is equal to the coset rs + I only if ab− rb− sa ∈ I;
since a, b ∈ I implies that ab ∈ I, this is equivalent to rb + sa ∈ I. But for general
subrings I of R this is not necessarily the case:

Exercise. Show that the set of upper triangular 2× 2-matrices with coefficients in
some ring R is a subring, but not an ideal of the ring of all 2× 2-matrices.

In order to guarantee that rb + sa ∈ I for a, b ∈ I and r, s ∈ R we have to
demand that I be an ideal: this is a subring of R with the additional property that
ri ∈ I whenever i ∈ I and r ∈ R (we abbreviate this by writing RI ⊆ I).

Note that if I and J are ideals in R, then so are

I + J = {i + j : i ∈ I, j ∈ J},
IJ = {i1j1 + . . . + injn : i1, . . . , in ∈ I, j1, . . . , jn ∈ J},

as well as I ∩ J . The index n in the product IJ is meant to indicate that we only
form finite sums. If A and B are ideals in some ring R, we say that B | A if A = BC
for some ideal C.

Exercise. Consider the space S of all sequences of rational numbers. This is
a ring with respect to pointwise addition and multiplication: (a1, a2, a3, . . .) +
(b1, b2, b3, . . .) = (a1 + b1, a2 + b2, a3 + b3, . . .) and (a1, a2, a3, . . .) · (b1, b2, b3, . . .) =
(a1b1, a2b2, a3b3, . . .).

Show that the the following subsets of S actually are subrings:

(1) the set N of sequences converging to 0;
(2) the set D of sequences converging in Q;
(3) the set C of Cauchy sequences;
(4) the set B of bounded sequences.

Observe that N ⊂ D ⊂ C ⊂ B ⊂ S. Determine which of these subrings are ideals
in B (resp. C, D).

The difference between additive subgroups, subrings, and ideals is not visible in
the ring R = Z of integers:

Exercise. Show that every subgroup A of Z is automatically a subring and even
an ideal in Z, and that there is an a ∈ Z such that A = aZ.

We say that an nonzero ideal I 6= R is

• irreducible if I = AB for ideals A, B implies A = R or B = R;
• a prime ideal if AB ⊆ I for ideals A, B always implies A ⊆ I or B ⊆ I;
• a maximal ideal if I ⊆ J ⊆ R for an ideal J implies J = I or J = R.
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For principal ideals, this coincides with the usual usage of prime and irreducible
elements: an ideal (a) is irreducible (prime) if and only if a is irreducible (prime).
In fact, (r) | (s) is equivalent to r | s.

Prime ideals and maximal ideals can be characterized as follows:

Proposition 5.1. An ideal I is
• prime in R if and only if R/I is an integral domain;
• maximal in R if and only if R/I is a field.

Proof. �

Note that an integral domain is a ring with 1 in which 0 6= 1; thus (1) is not
prime since the null ring R/R only has one element.

It follows from this proposition that every maximal ideal is prime; the converse
is not true in general. In fact, consider the ring Z[X] of polynomials with integral
coefficients. Then I = (X) is an ideal, and R/I ' Z is an integral domain but not
a field, hence I is prime but not maximal.

An important result is

Theorem 5.2 (Chinese Remainder Theorem). If A and B are ideals in R with
A + B = R, then R/AB ' R/A⊕R/B.

Proof. �

6. Ideal Arithmetic in Quadratic Number Fields

Let us first look at the ring R = Z[
√
−2 ]. We have

(1) 6 = 2 · 3 = (2 +
√
−2 )(2−

√
−2 ).

Does this mean that R is not a UFD? It would if the elements in the factorizations
(1) were irreducible, but, as a matter of fact, they are not: we have

2 = −
√
−2

2
,

3 = (1 +
√
−2 )(1−

√
−2 ),

2 +
√
−2 =

√
−2 · (1−

√
−2 ),

2−
√
−2 = −

√
−2 · (1 +

√
−2 ).

It is now easy to see that the two seemingly different factorizations come from
pairing up the factors in the prime factorization

6 = −
√
−2

2
(1 +

√
−2 )(1−

√
−2 ).

Now consider the ring of integers R = Z[
√
−5 ] in the quadratic number field

Q(
√
−5 ). Then

(2) 6 = (1 +
√
−5 )(1−

√
−5 ) = 2 · 3

Can we decompose these factors further? No we cannot: they are irreducible. In
fact, applying the norm to 1 +

√
−5 = αβ for α, β ∈ R yields 6 = NαNβ. Since

norms from complex quadratic fields are nonnegative, the only possibilities for Nα
are

• Nα = 1: writing α = x + y
√
−5, this means x2 + 5y2 = 1, hence x = ±1,

y = 0 and α = ±1.
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• Nα = 2: this is impossible, since x2 + 5y2 = 2 does not have a solution in
integers.

• Nα = 3: but then Nβ = 2, which is impossible.
• Nα = 6: this implies Nβ = 1, hence β = ±1.

Thus all factorizations of 1 +
√
−5 are trivial, that is, 1 +

√
−5 is irreducible. The

same can be shown for the other elements in the factorization of 6 above.
Moreover, the elements are not associated: if 1 +

√
−5 and e.g. 2 would differ

by a unit, then their quotient 1
2 (1 +

√
−5 ) would have to be an algebraic integer,

which it is not.
Thus Z[

√
−5 ] is not a UFD, and the factorizations of 6 in (2) are genuinely

different.
Kummer’s great idea was to introduce “ideal numbers” (turned into ideals by

Dedekind) which explain the different factorizations (2) in very much the same way
as the prime factors of 2 and 3 explain (1).

Where do these ideals that save unique factorizations come from? In order to
motivate their introduction, consider the following example of Dirichlet. The set
of integers S = {1, 5, 9, 13, . . .} form a multiplicatively closed set. But they do
not have unique factorization, as 9 · 49 = 21 · 21 shows. What is “missing” is a
common factor of 9 and 21 in S. Since it is not there, we introduce it as an ‘ideal
factor’ gcd(9, 21). Then 9 = (9, 21)2, 49 = (49, 21)2, and 21 = (9, 21)(49, 21), and
the nonunique factorization 9 · 49 = 21 · 21 is explained by the ideal factorization
441 = (9, 21)2(49, 21)2.

Now let us do the same in Z[
√
−5 ] by introducing the ideals p = (2, 1 +

√
−5 ),

q = (3, 1 +
√
−5 ), and q′ = (3, 1 +

√
−5 ) (note that (2, 1−

√
−5 ) = p). We find

p2 = (2 · 2, 2(1 +
√
−5 ), 2(1 +

√
−5 ),−4 + 2

√
−5 )

= (4, 2(1 +
√
−5 ),−4 + 2

√
−5 )

= (2)(2, 1 +
√
−5,−2 +

√
−5 );

since the last ideal contains
√
−5 = 2 + (−2 +

√
−5 ) and 1 = (1 +

√
−5 )−

√
5, we

conclude that p2 = (2)(1) = (2). Similarly, we get

qq′ = (9, 3(1 +
√
−5 ), 3(1−

√
−5 ), 6)

= (3)(3, 1 +
√
−5, 1−

√
−5, 2)

= (3)(1) = (3).

and

q2 = (9, 3(1 +
√
−5 ), (1 +

√
−5 )2)

= (2 +
√
−5 )(2−

√
−5, 1−

√
−5,−2)

= (2 +
√
−5 ).

Thus the nonunique factorization (2) turns into the ideal equality

(6) = p2qq′,

from which the factorizations of principal ideals

(6) = (2)(3) and (6) = (1 +
√
−5 )(1−

√
−5 )

follows by pairing the ideals p, q and q′ in two different ways.
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The first goal now is to prove that this is not accidental, and that factorization
into prime ideals holds in any ring of integers of an algebraic number field. This
can be shown in various degrees of abstraction. In the next section, we give a down
and dirty way of doing this in quadratic number fields, and then give the general
proof that the rings of integers in algebraic number fields are Dedekind rings.

As an exercise, study the factorization 6 = 2 · 3 = −
√
−6

2
in Z[

√
−6 ]. A more

difficult example is the factorization 6 = 2 · 3 = (2 +
√

10 )(−2 +
√

10 ). The reason
why 6 occurs so often here is that it is the product of the two smallest primes; there
are similar examples involving factorizations of 10 or 15 . . . .

Remark. The condition that we work in the ring of integers is important: the ring
R = Z[

√
−3 ], which is not integrally closed, does not have unique factorizations into

prime ideals, as we can see from the factorization (2)(2) = (1 +
√
−3 )(1 −

√
−3 ).

The ideal (2) is irreducible. Moreover, we do not have (2) = (1 +
√
−3 ), since this

would imply 1+
√
−3

2 ∈ R. In particular, this problem disappears over the integral
closure Z[ 1+

√
−3

2 ] of R, since we clearly have (2) = (1 +
√
−3 ).
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7. Unique Factorization into Prime Ideals

We want to show that every ideal in the ring ZK of integers in a quadratic
number field K = Q(

√
d ) can be factored uniquely into prime ideals.

Norms of Ideals. Ideals in rings of integers may not always be principal (gener-
ated by one element), but they always can be generated by two elements. This is not
true in general rings: the ideal (X1, X2, X3) in the polynomial ring Z[X1, X2, X3, X4]
cannot be generated by two elements.

In the following, K = Q(
√

d ) is a quadratic number field, and {1, ω} is a basis
of its ring of integers ZK .

Proposition 7.1. Let a ⊂ ZK be a Z-module in ZK , that is an additive subgroup
of ZK . Then there exist m,n ∈ N0 and a ∈ Z such that a = nZ⊕ (a + mω)Z.

If a 6= (0) is an ideal, then m | n, m | a (hence a = mb for some b ∈ Z) and
n | m · N(b + ω). In particular, every ideal in ZK is generated by at most two
elements.

Proof. Consider the subgroup H = {s : r + sω ∈ a} of Z. Every subgroup of Z
is automatically an ideal, hence H has the form H = mZ for some m ≥ 0. By
construction, there is an a ∈ Z such that a + mω ∈ a. Finally, a ∩ Z is a subgroup
of Z, hence a ∩ Z = nZ for some n ≥ 0.

We now claim that a = nZ ⊕ (a + mω)Z. The inclusion ⊇ is clear; assume
therefore that r + sω ∈ a. Since s ∈ H we have s = um for some u ∈ Z, and
then r − ua = r + sω − u(a + mω) ∈ a ∩ Z, hence r − ua = vn. But then
r + sω = r − ua + u(a + mω) = vn + u(a + mω) ∈ nZ⊕ (a + mω)Z.

Now assume in addition that a is an ideal. Then c ∈ a∩Z implies cω ∈ a, hence
c ∈ H by definition of H. This shows that nZ = a ∩ Z ⊆ H = mZ, hence m | n (if
the multiples of n are contained in the multiples of m, then m must divide n; this
instance of “to divide means to contain” will reoccur frequently in the following).

In order to show that m | a we observe that ω2 = x + yω for suitable x, y ∈ Z.
Since a is an ideal, a + mω ∈ a implies (a + mω)ω = mx + (a + my)ω ∈ a, hence
a + my ∈ H by definition of H, and therefore a + my is a multiple of m. This
implies immediately that m | a, hence a = mb for some b ∈ Z.

In order to prove the last divisibility relation we put α = a + mω = m(b + ω).
Then α ∈ a implies α(b + ω′) ∈ a. Since 1

mNα = m(b + ω)(b + ω′) ∈ a ∩ Z, we
conclude that 1

mN(b + ω) is a multiple of n. �

Our next aim is the claim that the “norm” aa′ of an ideal (for an ideal a, the
set a′ = {α′ : α ∈ a} is an ideal called the conjugate of a) is generated by a natural
number. For principal ideals a = (α) this is obvious in view of (α)(α)′ = (α)(α′) =
(αα′) = (Nα) = (−Nα) klar.

Proposition 7.2. Let a 6= (0) be an ideal in ZK ; then there is an a ∈ N such that
aa′ = aZK .

For the proof of Proposition 7.2 we use the following lemma due to Hurwitz:

Lemma 7.3. Let α, β ∈ ZK and m ∈ N. If Nα, Nβ and Trαβ′ are divisible by
m, then m | αβ′ and m | α′β.

Proof. Put γ = αβ′/m; then γ′ = α′β/m, and we know that γ + γ′ = (Trαβ′)/m

and γγ′ = Nα
m

Nβ
m are integers. But if the norm and the trace of some γ in a

quadratic number field are integral, then we have γ ∈ ZK . �
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Proof of Proposition 7.2. Using Proposition 7.1 we can write a = (α, β) for α, β ∈
ZK . Then a′ = (α′, β′) and therefore aa′ = (Nα,αβ′, α′β, Nβ). If we put a =
gcd(Nα,Nβ, Trαβ′) (in Z), then Hurwitz’s Lemma shows that αβ′

a and α′β
a are

integral; thus we get aa′ = (a)(Nα
a , Nβ

a , αβ′

a , α′β
a ), where the last ideal lies in ZK . In

order to prove aa′ = (a) it is therefore sufficient to show that 1 ∈ (Nα
a , Nβ

a , αβ′

a , α′β
a ).

But 1 is a Z-linear combination of Nα
a , Nβ

a and Tr αβ′

a (by the definition of a), hence
in particular a ZK-linear combination of Nα

a , Nβ
a and αβ′

a + α′β
a . This proves the

claim. �

The natural number a in Proposition 7.2 is called the norm of the ideal a; thus
we have aa′ = (Na). Since (Nab) = (ab)(ab)′ = (aa′)(bb′) = (Na)(Nb), the ideal
norm is multiplicative. Here are a few more useful properties:

• Na = 1 ⇐⇒ a = (1): if Na = 1, then (1) = aa′ ⊆ a ⊆ ZK = (1), and the
converse is clear.

• Na = 0 ⇐⇒ a = (0): if aa′ = (0), then Nα = αα′ = 0 for all α ∈ a.
• if a = nZ + m(b + ω)Z as in Prop. 7.1, then Na = mn.

In fact, let α = m(b + ω); then a = (n, α), a′ = (n, α′) and aa′ =
(n2,mn(b+ω′),mn(b+ω),m2N(b+ω)) = (mn)( n

m , b+ω, b+ω′, 1
nN(b+ω)).

By Proposition 7.1, the last ideal lies in ZK , hence (Na) = aa′ ⊆ (mn)ZK =
(mn) and therefore mn | Na.

For the converse Na | mn put A = Na; then aa′ = (A). Since α ∈ a and
n ∈ a′, we have nα ∈ aa′ = (A), hence A | nα = na + nmω; since {1, ω} is
an integral basis of ZK , this implies A | na and A | nm.

Lemma 7.4. The ideal a = nZ⊕m(b + ω)Z has norm Na = mn.

Proof. We have to show that aa′ = (mn). Writing n = mc for some integer c we
get

aa′ = (n, m(b + ω))(n, m(b + ω′))

= (n2,mn(b + ω),mn(b + ω′),m2N(b + ω))

= (mn)(c, b + ω, b + ω′,
1
c
N(b + ω)).

The second ideal is integral because of Propositon 7.1. We want to show that it is
the unit ideal. Note that the ideal must be generated by an integer since aa′ = (a).
But the only integers dividing b + ω are ±1 since {1, ω} is an integral basis. �

In arbitrary rings R, the norm of an ideal a is defined by Na = #R/a. This
agrees with our definition:

Proposition 7.5. Let a = nZ + m(b + ω)Z be an ideal in ZK . Then

S = {r + sω : 0 ≤ r < n, 0 ≤ s < m}

is a complete residue system modulo ZK/a.

Proof. We first show that every x+yω ∈ ZK is congruent mod a to an element of S.
Write y = mq+s for some q ∈ Z and 0 ≤ s < m; then x+yω−qm(b+ω) = x′+sω,
hence x + yω ≡ x′ + sω mod a. Now write x′ = nq′ + r for q′ ∈ Z and 0 ≤ r < n;
then x′ + sω ≡ r + sω mod a.
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Now we claim that the elements of S are pairwise incongruent modulo a. Assume
that r + sω ≡ r′ + s′ω mod a for 0 ≤ r, r′ < n and 0 ≤ s, s′ < m; then r− r′ + (s−
s′)ω ∈ a implies that s− s′ ∈ mZ and r − r′ ∈ nZ, hence r = r′ and s = s′. �

The Cancellation Law. Now we turn to the proof of unique factorization for
ideals. The idea behind the proof is the same as in the proof of unique factorization
for numbers: from equality of two products, conclude that there must be two equal
factors, and then cancel. Now cancelling a factor is the same as multiplying with
its inverse; the problem is that we do not have an inverse for ideals.

In the ring R = Z/6Z we have (2)(3) = (2)(0), but cancelling (2) yields nonsense.
Similar examples exist in all rings with zero divisors. Are there examples in integral
domains? Yes, there are. Simple calculations show that (a, b)3 = (a2, b2)(a, b)
in arbitrary commutative rings; whenever (a2, b2) 6= (a, b)2, we have a counter
example to the cancellation law. For an example, take R = Z[X, Y ] and observe
that XY ∈ (X, Y )2, byt XY /∈ (X2, Y 2).

In rings of integers of algebraic numbers, however, the cancellation law holds:

Proposition 7.6. If a, b, c are nonzero ideals in ZK with ab = ac, then b = c.

Proof. The idea is to reduce the cancellation law for ideals to the one for numbers,
or rather for principal ideals.

Thus assume first that a = (α) is principal. Then αb = ab = ac = αc. For every
β ∈ b we have αβ ∈ αc, hence there is a γ ∈ c such that αβ = αγ. This shows
β = γ ∈ c, hence b ⊆ c. By symmetry we conclude that b = c.

Now assume that a is an arbitrary ideal. Then ab = ac implies that (aa′)b =
(aa′)c. Since aa′ = (Na) is principal, the claim follows from the first part of the
proof. �

This shows that the ideals in ZK form a monoid with cancellation law, analogous
to the natural numbers. Such objects can be made into a group by imitating the
construction of Z from N. Another solution is to put ab−1 = 1

b ab′, where b = Nb

and 1
ma = { α

m : α ∈ a}. Such sets are called fractional ideals.

Divisibility of Ideals. We say that an ideal b is divisible by an ideal a if there
is an ideal c such that b = ac. Since c ⊆ ZK we see b = ac ⊆ a(1) = a; this fact
is often expressed by saying “to divide is to contain”. As a matter of fact, the
converse is also true:

Proposition 7.7. If a, b are nonzero ideals in ZK , then a ⊇ b if and only if a | b.

Proof. From a ⊇ b we deduce ba′ ⊆ aa′ = (a), where a = Na. Then c = 1
aba′ is

an ideal because of 1
aa′b ⊆ ZK (the ideal axioms are easily checked) Now the claim

follows from ac = 1
abaa′ = b. �

We know that maximal ideals are always prime, as it is known that a is maximal
in a ring R if and only if R/a is a field, and it is prime if and only if R/a is an
integral domain.

In the rings of integers in algebraic number fields all three notions coincide;
irreducible and maximal ideals are the same:

• irreducible ideals are maximal: if a were not maximal, then there were an
ideal b with a ( b ( (1); this implies b | a with b 6= (1), a.

• maximal ideals are irreducible: for a = bc implies a ( b ( (1).
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It remains to show that, in our rings, prime ideals are maximal; note that this
is not true in general rings. In fact we have to use Proposition 7.7 in the proof.

Proposition 7.8. In rings of integers of qadratic number fields, prime ideals are
maximal.

Proof. Assume that a = bc and a - b; then a | c, and since c | a (to divide is to
contain) we have a = c and therefore b = (1). �

Observe that from a | c and c | a we cannot conclude equality a = c: we do get
a = cd and c = ae, hence a = dea. But without the cancellation law we cannot
conclude that de = (1).

In R = Z[X], the ideal (X) is prime since Z[X]/(X) ' Z is an integral domain;
it is not maximal, since Z is not a field, and in fact we have (X) ⊂ (2, X) ⊂ R.

Now we can prove

Theorem 7.9. Every nonzero ideal a in the ring of integers ZK of a quadratic
number field K can be written uniquely (up to order) as a product of prime ideals.

Proof. We start with showing the existence of a factorization into irreducible ideals.
If a is irreducible, we are done. If not, then a = bc; if b and c are irreducible, we
are done. If not, we keep on factoring. Since Na = NbNc and 1 < Nb, Nc < Na
etc. this process must terminate, since the norms are natural numbers and cannot
decrease indefinitely.

Now we prove uniqueness. Assume that a = p1 · · · pr = q1 · · · qs are two decom-
positions of a into prime ideals. We claim that r = s and that we can reorder the
qi in such a way that we have pi = qi for 1 ≤ i ≤ r. Since p1 is prime, it divides
some qj on the right hand side, say p1 | q1. Since q1 is irreducible, we must have
equality p1 = q1, and the cancellation law yields p2 · · · pr = q2 · · · qs. The claim
now follows by induction. �



ALGEBRAIC NUMBER THEORY 15

8. Decomposition of Primes

Now that we know that ideals in ZK can be factored uniquely into prime ideals,
we have to come up with a description of these prime ideals. For quadratic (and,
as we will see, also for cyclotomic) fields this is not hard.

Lemma 8.1. Let p be a prime ideal; then there is a unique prime number p such
that p | (p).

Proof. We have p | pp′ = (Np); decomposing Np in Z into prime factors and using
the fact that p is prime shows that p divides (hence contains) some ideal (p) for
prime p. If p would divide (hence contain) prime ideals (p) and (q) for different
primes p and q, it would also contain 1, since p and q are coprime: this implies, by
Bezout, the existence of x, y ∈ Z with px + qy = 1. �

If p is the prime contained in p, then we say that the prime ideal p lies above p.
Since (p) has norm p2, we find that Np equals p oder p2.

Lemma 8.2. If p is an ideal in ZK with norm p, then it is prime.

Proof. The ideal is clearly irreducible (p = ab implies p = Np = Na · Nb), hence
prime. �

For describing the prime ideals in quadratic number fields it is useful to have the
notion of the discriminant. If K = Q(

√
m ) with m squarefree, let {1, ω} denote an

integral basis. We then define

disc K =
∣∣ 1 ω
1 ω′

∣∣2 = (ω − ω′)2 =

{
m if m ≡ 1 mod 4,

4m if m ≡ 2, 3 mod 4.

Theorem 8.3. Let p be an odd prime, K = Q(
√

m ) a quadratic number field, and
d = disc K its discriminant.

• If p | d, then pZK = (p,
√

m )2; we say that p is ramified in K.
• If (d/p) = +1, then pZK = pp′ for prime ideals p 6= p′; we say that p splits

(completely) in K.
• If (d/p) = −1, then pZK is prime, and we say that p is inert in K.

Proof. Assume first that p | d; since p is odd, we also have p | m. Now

(p,
√

m )2 = (p2, p
√

m,m) = (p)(p,
√

m, m
p ) = (p),

since the ideal (p,
√

m, m
p ) contains the coprime integers p and m

p , hence equals (1).
Next assume that (d/p) = 1; then d ≡ x2 mod p for some integer x ∈ Z. Putting

p = (p, x +
√

m ) we find

pp′ = (p2, p(x +
√

m ), p(x−
√

m ), x2 −m)

= (p)(p, x +
√

m,x−
√

m, (x2 −m)/p).

Clearly 2
√

m = x +
√

m − (x −
√

m ) and therefore 4m = (2
√

m)2 are contained
in the last ideal; since p and 4m are coprime, this ideal equals (1), and we have
pp′ = (p). If we had p = p′, then it would follow that 4m ∈ p and p = (1):
contradiction.

Finally assume that (d/p) = −1. If there were an ideal p of norm p, Proposition
7.1 would show that it has the form p = (p, b+ω) with p | N(b+ω). If ω =

√
m, this

means b2 −m ≡ 0 mod p, hence (d/p) = (4m/p) = (m/p) = +1 in contradiction to
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our assumption. If ω = 1
2 (1 +

√
m ), then (2b + 1)2 ≡ m mod p, and this again is a

contradiction. �

The description of all prime ideals above 2 is taken care of by the following

Exercise. Let K = Q(
√

m ) be a quadratic number field, where m is squarefree.
• If m ≡ 2 mod 4 then 2ZK = (2,

√
m )2.

• If m ≡ 3 mod 4 then 2ZK = (2, 1 +
√

m )2.
• If m ≡ 1 mod 8 then 2ZK = aa′, where a = (2, 1+

√
m

2 ) and a 6= a′.
• If m ≡ 5 mod 8 then 2ZK is prime.

The two cases p odd and p = 2 can be subsumed into one by introducing the
Kronecker-Symbol (d/p). This agrees with the Legendre symbol for odd primes p
and is defined for p = 2 and d ≡ 1 mod 4 by (d/2) = (−1)(d−1)/4; for d 6≡ 1 mod 4
we put (d/2) = 0.

Now we will derive a few corollaries.

Proposition 8.4. Assume that ZK is a PID, where K = Q(
√

m ). Then every
prime p with (d/p) = +1 can be written in the form ±p = x2 − my2 if m ≡
2, 3 mod 4, and in the form ±4p = x2 −my2 if m ≡ 1 mod 4.

Proof. Assume that (d/p) = +1; then p splits in K, hence p = pp′ for prime ideals
p, p′ of norm p. Since ZK is a PID, there is an α ∈ ZK such that p = (α). Taking
the norm show that (Nα) = (p) as ideals, hence Nα = ±p. The claim now follows
by writing α = x + yω, where {1, ω} is the standard integral basis of ZK . �

If we could show that the rings of integers in Q(
√

m ) for m = −1 and m = −2
were PIDs, this would imply

• p ≡ 1 mod 4 =⇒ p = x2 + y2,
• p ≡ 1, 3 mod 8 =⇒ p = x2 + 2y2,

and many similar results.
This stresses the importance of finding a method for determining when ZK is a

PID.
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9. The Ideal Class Group

Definition. We have seen that the set of nonzero ideals in ZK form a monoid
with cancellation law. Such monoids can be made into groups by imitating the
construction of Z from N (or that of Q) from Z); the group IK of these fractional
ideals contains the group HK = {(α) : α ∈ K×} of principal ideals as a subgroup,
and the quotient group Cl(K) = IK/HK is called the class group of K. This group
is trivial if and only if ZK is a PID. The order h(K) of Cl(K) is called the class
number of K.

We can avoid this formal procedure by introducing fractional ideals as actual
sets: write ab−1 = ab′(bb′)−1 = 1

b ab, where b = Nb denotes the norm of b, and
define 1

α c := { γ
α : γ ∈ c}. The set of nonzero fractional ideals forms a group

with respect to multiplication; note that the inverse of the integral ideal a is the
fractional ideal a−1 = 1

aa′ with a = Na.
In these notes, we choose a third possibility: we define an equivalence relation

on the set of all integral ideals and then make the equivalence classes into a group.
To this end, let a and b be two ideals; they are called equivalent (a ∼ b) if

there exist α, β ∈ ZK such that αa = βb. Checking the usual axioms (symmetry,
reflexivity, transitivity) is left as an exercise.

On the set of equivalence classes of ideals we define a multiplication as follows:
given classes c und d, we pick representatives a ∈ c and b ∈ d, and then put
c · d = [ab]. This definition does not depend on the choice of representatives; the
class of the unit ideal is the neutral element; and finally the fact that aa′ = (a)
shows that [a]−1 = [a′].

Thus the ideal classes [a] form an abelian group Cl(K). If this group is trivial,
then every ideal is equivalent to (1), that is, every ideal is principal. Since the
converse is also clear, we see that ZK is a PID if and only if K has class number 1.

Consider e.g. the ring R = Z[
√
−5 ]; here we have the classes 1 = [(1)] und

c = [a] mit a = (2, 1 +
√
−5 ). We have c2 = 1 since a2 = (2) ist c2 = 1. Putting

b = (3, 1 +
√
−5 ) we find a ∼ b: in fact, ab = (1 +

√
−5 ) implies ab ∼ (1), hence

[b] = [a]−1 = [a]. More calculations seem to suggest that there are only two classes,
that is, the class number of R seems to be 2.

The goal of this section is to show that Cl(K) is finite and to give an algorithm for
computing it. The finiteness of the class group is one of three important finiteness
theorems in algebraic number theory:

• Cl(K) is finite;
• EK = Z×

K is a finitely generated abelian group;
• given a B > 0, the set of number fields with discriminant < B is finite.

Finiteness of the Class Number. We now show that every ideal class in Cl(k)
contains an integral ideal with norm bounded by a constant depending only on k;
this immediately implies the finiteness of the class number.

Let us call an ideal in ZK primitive if it is not divisible by a rational integer
m > 1. Clearly every ideal class is represented by a primitive ideal.

According to Proposition 7.1, every ideal a has a Z-basis of the form {n, m(b+ω)}
with m | n; Thus a is primitive if and only if m = 1. In other words: if a is primitive,
then there exist n ∈ N and b ∈ Z such that a = nZ⊕(b+ω)Z, and we have Na = n.
Now we claim:
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Theorem 9.1. Let m ∈ Z be squarefree, K = Q(
√

m ) a quadratic field with ring
of integers OK = Z[ω] and discriminant d. Define the Gauss bound

µK =

{√
d/5, if d > 0,√
−d/3, if d < 0.

Then every ideal class in Cl(K) contains an integral nonzero ideal with norm ≤ µK ;
in particular, the number h = # Cl(K) of ideal classes is finite.

The bounds are clearly best possible: for d = 5 and d = −3 they are sharp. If
µK ≤ 2, then every ideal class contains a nonzero integral ideal with norm < 2;
but then the norm must be 1, hence every ideal class contains the unit ideal, and
we deduce that h = 1 and that OK is a PID. Theorem 9.1 says that this is true for
−12 ≤ d ≤ 20, i.e. for m ∈ {−11,−7,−3,−2,−1, 2, 3, 5, 13, 17}.

Exercise. If d ≡ 5 mod 8, then (2) is inert, hence there are no ideals of norm 2
in OK . Show that this implies that the fields with d = −19, 21, 29, 37 have class
numberl 1. Which fields do you get by demanding in addition that (3) be inert
(that is, d ≡ 2 mod 3)?

Now consider R = Z[
√
−5 ], where d = −20; according to Theorem 9.1, every

ideal class contains a nonzero ideal with norm <
√

20/3, hence ≤ 2. Since there
are only two such ideals, namely the unit ideal (1) and the nonprincipal ideal
(2, 1 +

√
−5 ), we deduce that R has class number 2.

Actually we can show more: we have seen that Cl(K) is generated by the classes
of (1) and a = (2, 1 +

√
−5 ). Now let p be a prime with (−20/p) = +1; then

pZK = pp′ for some prime ideal p with norm p. Then p is either principal, say
p = (a + b

√
−5 ) and thus p = a2 + 5b2, or p ∼ a, and then ap = (C + d

√
−5 ) is

principal. In the latter case we get 2p = C2 + 5d2; since C and d are both odd, we
can write C = 2c+d for some c ∈ Z and find 2p = (2c+d)2 +5d2 = 4c2 +4cd+6d2,
that is, p = 2c2 + 2cd + 3d2. In other words: if (−5/p) = +1, then p = a2 + 5b2 or
p = 2c2 + 2cd + 3d2.

Since p = a2 + 5b2 ≡ a2 + b2 ≡ 1 mod 4, this can only happen if p ≡ 1 mod 20.
Similarly, p = 2c2 + 2cd + 3d2 ≡ 3 mod 4, that is, p ≡ 11, 19 mod 20. We have
proved:

Theorem 9.2. Primes p ≡ 1, 9 mod 20 are represented by the quadratic form x2 +
5y2, whereas primes p ≡ 11, 19 mod 20 are represented by 2x2 + 2xy + 3y2.

An important consequence of Theorem 9.1 is the following observation:

Corollary 9.3. Let K = Q(
√

m ) be a quadratic number field with class number
h, and assume that pOK = pp′ splits completely in OK . Then there exist x, y ∈ N
such that ±4ph = x2 −my2.

Proof. The h-th power of any ideal in K = Q(
√

m ) is principal. In particular, ph =
(x+y

√
m

2 ) for suitable integers x, y, and taking the norm yields ph = |x
2−my2

4 |. �

Proof of Theorem 9.1. Let c = [a] be an ideal class represented by an ideal a. We
may and will assume that a is primitive. Therefore a = (a, α) with a = Na and
α = b + ω = s + 1

2

√
d for some s ∈ Q with 2s ∈ Z. If a2 ≤ µK , we are done; if
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not, we apply the Euclidean algorithm to the pair (s, a) and find q ∈ Z such that
s− qa = r and

|r| ≤ a

2
if d < 0,

a

2
≤ |r| ≤ a if d > 0.

Setting α1 = r + 1
2

√
d we find α1 ∈ a, |Nα1| ≤ 1

4 (a2− d) < a2, and a1 := 1
aα′

1a ∼ a
is an integral ideal with [a1] = [a] and Na1 < Na. We repeat this step until we
find an ideal of norm ≤ µK ; since the decreases with each step, the algorithm
terminates.

The proof of the inequality |Nα1| ≤ 1
4 (a2 − d) < a2 is simple: if d < 0, then

|Nα1| = |r2 − d
4 | ≤

a2+|d|
4 < 1 since a2 > µK = |d|

3 , and if d > 0, we have
−a2 = a2−5a2

4 < r2 − d
4 < a2.

It remains to show that the ideal a1 is integral; but this is clear in light of
1
aα′

1a ⊆ OK ⇐⇒ α′a ⊆ (a) = aa′ ⇐⇒ (α′) ⊆ a′. �

10. The Bachet-Mordell Equation

Let us now see what we can say about the integral solutions of the diophantine
equation y2 = x3 − d (named after Bachet and Mordell, who studied them). We
will start with arbitrary d, but will impose conditions on d as we go along.

We start by factoring the equation over K = Q(
√

d ):

x3 = y2 + d = (y +
√
−d )(y −

√
−d ).

What can we say about the gcd of the ideals a = (y +
√
−d ) and a′? Any common

prime factor p (with p | p) also divides 2
√
−d; since p |

√
−d (and p 6= 2) implies

p | d, p | y, p | x and finally p2 | d, we can exclude this possibility by demanding
that d be squarefree .

We now have to discuss the remaining possibility p | 2:

• d ≡ 2 mod 4: then p | (
√
−d ) (since p = (2,

√
−d )), hence p | y, p | y

and finally x3 = y2 + d ≡ 2 mod 4: contradiction, since cubes cannot be
divisible exactly by 2.

• d ≡ 1 mod 4: here p = (2, 1 +
√
−d ), hence p | (y +

√
−d ) if and only if

y is odd. This implies x3 = y2 + d ≡ 1 + 1 ≡ 2 mod 4, which again is a
contradiction.

• d ≡ 3 mod 4: here y +
√
−d is divisible by p (even by 2) if y is odd. Then

d = x3 − y2 implies that x is even, hence d ≡ −y2 ≡ −1 mod 8. Thus if we
assume that d 6≡ 7 mod 8 , find that no p | 2 can be a common divisor of
a and a′.

Thus a and a′ are coprime. Since their product is a cube, there exists an ideal b

such that a = b3; conjugation then shows that a′
3 = b′

3.
Now let h denote the class number of Q(

√
−d ). Since both b3 as well as fbh

are principal, we can conclude that b is principal if we assume that 3 - h . Thus

b = ( r+s
√
−d

2 ) with r ≡ s mod 2.
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In the case d > 0, d 6= 1, 3 the only units are ±1, hence the ideal equation yields
the equation of numbers

y +
√
−d =

(
r + s

√
−d

2

)3

,

where we have subsumed the sign into the cube. Comparing coefficients now yields
1 = 1

8 (3r2s− ds3), hence 8 = 3r2s− ds3 = s(3r2 − ds2).
This implies s | 8, hence s = ±1 or r ≡ s ≡ 0 mod 2. In the first case we get

±8 = 3r2− d, hence d = 3r2∓ 8; in the second case we put r = 2t, s = 2u and find
1 = u(3t2 − du2), that is u = ±1 and d = 3t2 ∓ 1.

Thus we have shown: if d, under the above assumptions, does not have the form
3t2 ± 1 or 3t2 ± 8, then the diophantine equation y2 = x3 − d does not have an
integral solution.

What happens if d has this form? Assume e.g. that d = 3r2−8; then comparing
coefficients (using s = 1) yields 8y = r3− 3dr = r3− 9r3 + 24r = 24r− 8r3, that is
y = (3− r2)r, as well as y2 + d = r6 − 6r4 + 12r2 − 8 = (r − 2)3, hence x = r − 2.
Thus d = 3r2−8 yields the solution (r2−2,±(3−r2)r) of our diophantine equation.
Similarly, other representations yield other solutions: d = 3r2 + 8, 3t2 + 1, 3t2 − 1
gives rise to the solutions (r2+2,±r(r2+3)), (4t2+1,±t(8t2+3)), (4t2−1,±t(8t2−
3)).

The only question that remains is: can d have more than one of these represen-
tations? The answer is: d = 11 has exactly two representations, all other d have at
most one. The proof is simple: equations such as 3r2 − 8 = 3t2 − 1 are impossible
modulo 3; 3r2−8 = 3t2 +1 leads to 3(r2−t2) = 9, hence r2−t2 = (r−t)(r+t) = 3,
whose only solution is r = ±2, t = ±1, which leads to d = 4, but this is not square-
free; the possibility 3r2 + 8 = 3t2 − 1 yields 3 = t2 − r2, hence t = ±2, r = ±1 and
thus d = 3 + 8 = 3 · 22 − 1 = 11).

We have proved:

Theorem 10.1. Let d 6= 1, 3 be a squarefree natural number, and assume that d 6≡
7 mod 8. If the class number of Q(

√
−d ) is not divisible by 3, then the diophantine

equation y2 = x3 − d has
(1) exactly two pairs of integral solutions (3,±4) and (15,±58) for d = 11;
(2) exactly one pair of integral solutions if d 6= 11 has the form d = 3t2 ± 1 or

d = 3t2 ± 8;
(3) no integral solutions otherwise.

Consider the case d = 26 = 3 · 32 − 1: the equation y2 = x3 − 26 has the
predicted solution (207,±42849) as well as (3,±1). The theorem implies that the
class number of Q(

√
−26 ) must be divisible by 3; in fact we have h = 6.

Similarly it can be proved that the integral solutions of xp +yp = zp are only the
trivial solutions if p does not divide the class number of Q(ζp) – this is Kummer’s
approach to Fermat’s problem.
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