The Dirac Delta in Curvilinear Coordinates

The Dirac delta is often defined by the property

$$
\int_{\mathrm{V}} f(\mathbf{r}) \delta\left(\mathbf{r}-\mathbf{r}_{0}\right) d v= \begin{cases}f\left(\mathbf{r}_{0}\right) & \text { if } P_{0}\left(x_{0}, y_{0}, z_{0}\right) \text { is in } \mathrm{V} \\ 0 & \text { if } P_{0}\left(x_{0}, y_{0}, z_{0}\right) \text { is not in } \mathrm{V}\end{cases}
$$

There is no restriction in the number of dimensions involved and $f(\mathbf{r})$ can be a scalar function or a vector function. However, it is rather obvious that $f(\mathbf{r})$ must be defined at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$. If the function $f(\mathbf{r})$ is a constant, e.g., unity, then one sees that the delta is normalized. As a result, it is customary to speak of the delta as a symbolic representation for a unit source. However, the source is of a unit magnitude in the sense that the integral of the delta over the coordinates involved is unity. If we consider a three dimensional orthogonal curvilinear coordinate system with coordinates $\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ and scale factors

$$
h_{i}=\left[\left(\frac{\partial x}{\partial \xi_{i}}\right)^{2}+\left(\frac{\partial y}{\partial \xi_{i}}\right)^{2}+\left(\frac{\partial z}{\partial \xi_{i}}\right)^{2}\right]^{1 / 2}
$$

then one expresses the Dirac delta $\delta\left(\mathbf{r}-\mathbf{r}_{0}\right)$ as follows:

$$
\delta\left(\mathbf{r}-\mathbf{r}_{0}\right) \rightarrow \frac{\delta\left(\xi_{1}-\xi_{10}\right)}{h_{1}} \frac{\delta\left(\xi_{2}-\xi_{20}\right)}{h_{2}} \frac{\delta\left(\xi_{3}-\xi_{30}\right)}{h_{3}}
$$

In spherical polar coordinates: $\xi_{1}=r, \xi_{2}=\theta, \xi_{3}=\varphi$, we have

$$
x=r \sin \theta \cos \varphi, \quad y=r \sin \theta \sin \varphi, \quad z=r \cos \theta
$$

and

$$
h_{1}=1, \quad h_{2}=r, \quad h_{3}=r \sin \theta, \quad d v=r^{2} \sin \theta d r d \theta d \varphi,
$$

and the corresponding Dirac delta is given by

$$
\delta\left(\mathbf{r}-\mathbf{r}_{0}\right)=\frac{1}{r^{2} \sin \theta} \delta\left(r-r_{0}\right) \delta\left(\theta-\theta_{0}\right) \delta\left(\varphi-\varphi_{0}\right)
$$

If one considers spherical coordinates with azimuthal symmetry, the φ-integral must be projected out, and the denominator becomes

$$
\int_{0}^{2 \pi} r^{2} \sin \theta d \varphi=2 \pi r^{2} \sin \theta
$$

and consequently

$$
\delta\left(\mathbf{r}-\mathbf{r}_{0}\right)=\frac{1}{2 \pi r^{2} \sin \theta} \delta\left(r-r_{0}\right) \delta\left(\theta-\theta_{0}\right)
$$

If the problem involves spherical coordinates, but with no dependence on either φ or θ, the denominator becomes

$$
\int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \varphi r^{2} \sin \theta=4 \pi r^{2}
$$

and one has

$$
\delta\left(\mathbf{r}-\mathbf{r}_{0}\right)=\frac{1}{4 \pi r^{2}} \delta\left(r-r_{0}\right)
$$

Similarly, in cylindrical coordinates we have $\xi_{1}=\varrho, \xi_{2}=\varphi, \xi_{3}=z$, we have

$$
h_{1}=1, \quad h_{2}=\varrho, \quad h_{3}=1, \quad d v=\varrho d \varrho d \varphi d z,
$$

and the corresponding forms for the Dirac delta are given by

$$
\begin{aligned}
\delta\left(\mathbf{r}-\mathbf{r}_{0}\right) & =\frac{1}{\varrho} \delta\left(\varrho-\varrho_{0}\right) \delta\left(\varphi-\varphi_{0}\right) \delta\left(z-z_{0}\right) \\
& =\frac{1}{2 \pi \varrho} \delta\left(\varrho-\varrho_{0}\right) \delta\left(z-z_{0}\right) \\
& =\frac{1}{2 \pi \varrho} \delta\left(\varrho-\varrho_{0}\right)
\end{aligned}
$$

examples:

- The charge density due to a spherical shell with uniform charge Q is given by

$$
\rho(\mathbf{r})=\frac{Q \delta\left(r-r_{0}\right)}{4 \pi r^{2}}
$$

- Consider a ring of charge Q and radius a oriented to lie in the xy plane with its centre coincident with the origin.
\triangleright The charge density function expressed in cylindrical coordinates is

$$
\rho(\mathbf{r})=\frac{Q \delta(\rho-a) \delta(z)}{2 \pi \rho}
$$

\triangleright In spherical coordinates the charge density is

$$
\rho(\mathbf{r})=\frac{Q \delta(\rho-a) \delta(\theta-\pi / 2)}{2 \pi r^{2} \sin \theta}
$$

To find the electric potential at an on-axis point: $\mathbf{r}=z \hat{\mathbf{z}}$, one refers to the expression

$$
\Phi(\mathbf{r})=\frac{1}{4 \pi \epsilon_{0}} \int \frac{d v^{\prime} \rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

Using spherical coordinates, and setting

$$
\begin{aligned}
d v^{\prime} & =r^{\prime 2} \sin \theta^{\prime} d r^{\prime} d \theta^{\prime} d \phi^{\prime} \\
\mathbf{r}^{\prime} & =r^{\prime} \sin \theta^{\prime} \cos \phi^{\prime} \hat{\mathbf{x}}+r^{\prime} \sin \theta^{\prime} \sin \phi^{\prime} \hat{\mathbf{y}}+r^{\prime} \cos \theta^{\prime} \mathbf{\mathbf { z }}
\end{aligned}
$$

one obtains

$$
\Phi(\mathbf{r})=\frac{Q}{4 \pi \epsilon_{0}\left(a^{2}+z^{2}\right)^{1 / 2}}
$$

