
OKA’S CONJECTURE ON IRREDUCIBLE PLANE SEXTICS

Alex Degtyarev

Abstract. We partially prove and partially disprove Oka’s conjecture on the fun-
damental group/Alexander polynomial of an irreducible plane sextic. Among other
results, we enumerate all irreducible sextics with simple singularities admitting dihe-
dral coverings and find examples of Alexander equivalent Zariski pairs of irreducible
sextics.

1. Introduction

1.1. Motivation and principal results. In [23], O. Zariski initiated the study
of the fundamental group of the complement of a plane curve as a topological tool
controlling multiple planes ramified at the curve. He found an example of a curve
whose group is not abelian: it is a sextic with six ordinary cusps which all lie on a
conic. Since then, very few general results have been obtained in this direction; one
may mention M. V. Nori’s theorem [15], stating that a curve with sufficiently simple
singularities has abelian fundamental group, and two generalizations of original
Zariski’s example, due to B. G. Moishezon [13] and M. Oka [16].

The fundamental group of an algebraic curve C of large degree is extremely
difficult to compute. As an intermediate tool, Zariski [24] suggested to study its
Alexander polynomial ∆C(t), which proved quite useful in knot theory. This ap-
proach was later developed by A. Libgober in [11], [12]. The Alexander polynomial
is an algebraic invariant of a group; it is trivial whenever the group is abelian (see
Section 3.1 for definitions and further references). In the case of plane curves, the
Alexander polynomial can be found in terms of dimensions of certain linear sys-
tems, which depend on the types of the singular points of the curve and on their
global position in P2, see [4]. As a disadvantage, the Alexander polynomial is often
trivial, as it is subject to rather strong divisibility conditions, see [24], [11], and [6].
For example, it is trivial for all irreducible curves of degree up to five.

The fundamental groups of all curves of degree up to five, both irreducible and
reducible, are known, see [5], and next degree six has naturally become a subject of
intensive research. A number of contributions has been made by E. Artal, J. Car-
mona, J. I. Cogolludo, C. Eyral, M. Oka, H. Tokunaga, etc., see recent survey [18].
As a result, it was discovered that an important rôle is played by the so called sextics
of torus type, i.e., those whose equation can be represented in the form p3 +q2 = 0,
where p and q are some homogeneous polynomials of degree 2 and 3, respectively.
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Among sextics of torus type is Zariski’s six cuspidal sextic, as well as all other irre-
ducible sextics with abnormally large Alexander polynomial, see [4]. Furthermore,
sextics of torus type are a principal source of examples of irreducible curves with
nontrivial Alexander polynomial or nonabelian fundamental group. Based on the
known examples, Oka suggested the following conjecture.

1.1.1. Conjecture (Oka, see [10]). Let C be an irreducible plane sextic, which is
not of torus type. Then:

(1) the Alexander polynomial ∆C(t) is trivial;
(2) if all singularities of C are simple, the group π1(P2 r C) is abelian;
(3) the fundamental group π1(P2 r C) is abelian.

In this paper, we disprove parts (2) and (3) of the conjecture and prove part (1)
restricted to sextics with simple singularities (i.e., those of type Ap, Dq, E6, E7,
or E8, see [1] or [9] for their definition).

1.1.2. Theorem (see Theorem 4.1.1 for details). An irreducible plane sextic C
with simple singularities is of torus type if and only if ∆C(t) 6= 1. ¤
1.1.3. Theorem (see Theorems 4.3.4 and 4.3.3 for details). There are irreducible
plane sextics C1, C2 with simple singularities whose fundamental groups factor to
the dihedral groups D10 and D14, respectively. The sextics are not of torus type. ¤
1.1.4. Theorem (see Theorem 5.2.2 for details). There is an irreducible plane
sextic C with a singular point adjacent to X9 (a quadruple point) and fundamental
group D10 × (Z/3Z). The sextic is not of torus type. ¤

Theorems 1.1.2–1.1.4 are mere simplified versions of the statements cited in the
titles. We do not prove them separately.

Essentially, Theorem 1.1.2 follows from the Riemann-Roch theorem for K3-
surfaces, which is not applicable if the curve has non-simple singular points. For
sextics with a singular point adjacent to X9, we prove an analog of Theorem 1.1.2
(see Theorem 5.2.2) by calculating the fundamental groups directly. This result
substantiates Conjecture 1.1.1(1) in its full version. The remaining case of curves
with a singular point adjacent to J10 (a quasihomogeneous singularity of type (3, 6))
requires a different approach; I am planning to treat it in a subsequent paper.

1.2. Other results. The bulk of the paper is related to the study of irreducible
sextics with simple singularities whose fundamental groups factor to a dihedral
group D2n, n > 3. We call such curves special. Alternatively, special is an irre-
ducible sextic that serves as the ramification locus of a regular D2n-covering of the
plane. We show that only D6, D10, and D14 can appear as monodromy groups of
dihedral coverings ramified at irreducible sextics, see Theorem 4.3.2, and essentially
enumerate all special sextics, see Sections 4.1 and 4.3. (The list of sets of singular-
ities realized by irreducible sextics with exactly one D6-covering is omitted due to
its length, and the rigid isotopy classification of sextics admitting D6-coverings is
not completed.)

As a by-product, we discover six sets of singularities that are realized by both
special and non-special irreducible sextics with ∆C(t) = 1. They give rise to so
called Alexander equivalent Zariski pairs of irreducible sextics (see Remark 4.3.5
for details and further references). To my knowledge, these examples are new. It is
worth mentioning that, as in the case of abundant vs. non-abundant curves (Zariski
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pairs of irreducible sextics that differ by their Alexander polynomials, see [4]),
within each pair the special curve is distinguished by the existence of certain conics
passing in a prescribed way through its singular points. One may hope that, as in
the case of abundant curves, these conics can be used to obtain explicit equations.

The fundamental groups of special sextics are not known. I would suggest that,
at least for the simplest curve in each set, they are minimal.

1.2.1. Conjecture. The fundamental groups of the special sextics with the sets
of singularities 3A6 and 4A4 are D14 × (Z/3Z) and D10 × (Z/3Z), respectively.

Any reduced sextic C of torus type is the critical locus of the projection to P2 of
an irreducible cubic surface V ⊂ P3. The monodromy of this (irregular) covering is
an epimorphism from π1(P2rC) to the symmetric group S3 = D6. Conversely, any
such epimorphism gives rise to a triple covering of P2 ramified at C. We show that
the existence of a torus structure is equivalent to the existence of an epimorphism
π1(P2rC) → S3, see Theorem 4.1.1. (The relation between S3-coverings and torus
structures was independently discovered by Tokunaga [21].) Remarkably, it is not
true that every triple plane obtained in this way is a cubic surface. In the world
of irreducible sextics with simple singularities, there is one counter-example; it is
given by Theorem 4.1.3.

The relation between torus structures and D6-coverings is exploited to detect
sextics of torus type and eventually prove Theorem 1.1.2. Among other results, we
classify irreducible sextics admitting more than one torus structure. The maximal
number is attained at the famous nine cuspidal sextic: it has twelve torus structures
and thirteen D6-coverings.

Our study of dihedral coverings is based on Proposition 3.4.4, which relates the
existence of such coverings to a certain invariant KC used in the classification of
sextics. As a first step towards reducible curves, we prove Theorem 3.5.1, which
takes into account the 2-torsion of the group. Still, this approach can only detect
dihedral quotients of the fundamental group that are compatible with the standard
homomorphism π1(P2 r C) → Z/2Z sending each van Kampen generator to 1. A
somewhat complementary approach was developed by Tokunaga, see recent paper
[20] for further references. In particular, he constructed a series of dihedral coverings
of the plane ramified at reducible sextics. In the examples of [20], components of
the ramification locus have distinct ramification indices.

Apart from the common goal, Conjecture 1.1.1, last section 5 is not related to
the rest of the paper: it is a straightforward application of the results of [3] and [5]
dealing with curves of degree m with a singular point of multiplicity m − 2. In
Theorem 5.2.1, we enumerate all irreducible sextics with a quadruple point and
nonabelian fundamental group. There are seven rigid isotopy classes; five of them
are of torus type, and the remaining two have trivial Alexander polynomial.

1.3. Contents of the paper. In §2, we introduce basic notation and remind
a few facts needed in the sequel. §3 contains a few auxiliary results, both old
and new, related to sextics, Alexander polynomials, and torus structures. We
introduce the notion of weight of a curve, which is used in subsequent statements.
Proposition 3.4.4 and Theorem 3.5.1 are also proved here. In §§4 and 5, we state
and prove extended versions of Theorems 1.1.2–1.1.4. The most involved is the case
of curves admitting D6-coverings. Technical results obtained in Section 4.2 can be
used in a further study of reducible sextics of torus type.
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2. Preliminaries

2.1. Basic notation. For an abelian group G, we use the notation G∗ for the dual
group Hom(G,Z). The minimal number of generators of G is denoted by `(G); if
p is a prime, we abbreviate `p(G) = `(G⊗ Fp).

We use the notation Bn for the braid group on n strings, Sn for the symmetric
group of degree n, and D2n for the dihedral group of order 2n, i.e., the semidirect
product

1 → (Z/nZ)[t]/(t + 1) → D2n → Z/2Z → 1.

One has S3 = D6. The reduced braid group is the quotient Bn/∆2 of Bn by its
center. B3/∆2 is the free product (Z/2Z) ∗ (Z/3Z).

The Milnor number of an isolated singular point P is denoted by µ(P ). The
Milnor number µ(C) of a reduced plane curve C is defined as the total Milnor
number of all singular points of C. Given two plane curves C and D and an
intersection point P ∈ C∩D, we use the notation (C ·D)P for the local intersection
index of C and D at P .

When a statement is not followed by a proof, either because it is obvious or
because it is cited from another source, it is marked with ¤
2.2. Lattices. A lattice is a finitely generated free abelian group L equipped with
a symmetric bilinear form b : L ⊗ L → Z. Usually, we abbreviate b(x, y) = x · y
and b(x, x) = x2. A lattice L is even if x2 = 0 mod 2 for all x ∈ L. As the
transition matrix between two integral bases has determinant ±1, the determinant
detL = det b ∈ Z is well defined. A lattice L is called nondegenerate if det L 6= 0;
it is called unimodular if det L = ±1.

The bilinear form on a lattice L extends to L ⊗ Q. If L is nondegenerate, the
dual group L∗ can be identified with the subgroup

{
x ∈ L⊗Q ∣∣ x · y ∈ Z for all x ∈ L

}
.

Hence, L is a subgroup of L∗ and the quotient L∗/L is a finite group; it is called
the discriminant group of L and is denoted by discr L. The discriminant group
inherits from L⊗Q a symmetric bilinear form discrL⊗ discr L → Q/Z, called the
discriminant form, and, if L is even, its quadratic extension discrL → Q/2Z. When
speaking about discriminant groups, their (anti-)isomorphisms, etc., we assume that
the discriminant form and its quadratic extension are taken into account. One has
|discrL| = |det L|; in particular, discrL = 0 if and only if L is unimodular.

Given a lattice L, we use the notation nL, n ∈ N, for the orthogonal sum of
n copies of L, and L(q), q ∈ Q, for the lattice obtained from L by multiplying the
bilinear form by q (assuming that the result is an integral lattice).

From now on, all lattices are assumed even.
A root in a lattice L is a vector of square (−2). A root system is a negative definite

lattice generated by its roots. Each root system admits a unique decomposition into
orthogonal sum of irreducible root systems, the latter being either Ap, p > 1, or Dq,
q > 4, or E6, E7, E8. Their discriminant forms are as follows:

discrAp = 〈− p
p+1 〉, discrD2k+1 = 〈−2k+1

4 〉, discrD2k =
[−k

2
1
2

1
2 1

]
,

discrE6 = 〈23 〉, discrE7 = 〈 12 〉, discrE8 = 0.
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Here, 〈p/q〉 with (p, q) = 1 and pq = 0 mod 2 represents the quadratic form on the
cyclic group Z/qZ sending 1 to (p/q) mod 2Z, and the (2× 2)-matrix represents a
quadratic form on the group (Z/2Z)2.

A finite index extension of a nondegenerate lattice L is a lattice S containing L
as a finite index subgroup, so that the bilinear form on L is the restriction of
that on S. Since S is a lattice, it is canonically embedded into L∗ and the quotient
K = S/L is a subgroup of discr L. This subgroup is called the kernel of the extension
S ⊃ L. It is isotropic, i.e., the restriction to K of the discriminant quadratic form
is identically zero. Conversely, given an isotropic subgroup K ⊂ discr L, the group
S = {u ∈ L∗ | (u mod L) ∈ K} is a finite index extension of L.

2.2.1. Theorem (see [14]). Let L be a nondegenerate even lattice. Then the map
S 7→ K = S/L ⊂ discr L establishes a one to one correspondence between the set
of isomorphism classes of finite index extensions S ⊃ L and the set of isotropic
subgroups of discr L. Under this correspondence, one has discr S = K⊥/K. ¤

2.3. Singularities. Let f(x, y) be a germ at an isolated singular point P , let X̃
be the minimal resolution of the singular point P of the surface z2 + f(x, y) = 0,
and let Ei be the irreducible components of the exceptional divisor in X̃. The group
H2(X̃) is spanned by the classes ei = [Ei], which are linearly independent and form
a negative definite lattice with respect to the intersection index form. This lattice
is called the resolution lattice of P and is denoted Σ(P ). The basis {ei} is called
a standard basis of Σ(P ); it is defined up to reordering. As usual, e∗i stand for the
elements of the dual basis of Σ(P )∗ = H2(X̃).

If P is simple, of type A, D, E, then Σ(P ) is the irreducible root system of the
same name and one has µ(P ) = rkΣ(P ). In this case, we order the elements of a
standard basis according to the following diagrams:

Ap: s1 s2 . . . sp Dq: s1 s2 . . . sq−2 sq−1

sq

E6: s1 s2 s3 s4 s5
s6

E7: s1 s2 s3 s4 s5 s6
s7

E8: s1 s2 s3 s4 s5 s6 s7
s8

The order is still defined up to symmetries of the Dynkin graph.
A rigid isotopy of plane curves is a topologically equisingular deformation or,

equivalently, a path in a topologically equisingular stratum of the space of curves.
If all singular points involved are simple, the choice of the category (topological)
in the definition above is irrelevant, as topologically equivalent simple singularities
are diffeomorphic (see, e.g., [1] or [9]).

3. Plane sextics

3.1. Ramified coverings. Let C ⊂ P2 be a reduced plane sextic. Throughout
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the paper we use the notation introduced in the following diagram:

Z ←−−−−−↩ C

p3

y
wwww

C̃ ∪ Ẽ ↪−−−−−→ X̃
ρ−−−−→ X ←−−−−−↩ C

y p̃2

y p2

y
wwww

C̃ ∪ E ↪−−−−−→ Y −−−−→ P2 ←−−−−−↩ C

Here, X and Z are, respectively, the double and the 6-fold cyclic coverings of P2

ramified at C; clearly, Z can also be regarded as a triple covering of X. The copies
of C in X and Z are identified with C itself. The map ρ : X̃ → X is the minimal
resolution of singularities of X, C̃ ⊂ X̃ is the proper transform of C, and Ẽ is the
exceptional divisor. The restriction ρ : X̃ r (C̃ ∪ Ẽ) = X r C is a diffeomorphism.
If all singularities of C are simple, then X̃ can be obtained as a double covering of
a certain embedded resolution Y of C; more precisely, Y is the minimal resolution
in which all odd order components of the pull-back of C are smooth and disjoint.
The exceptional divisor in Y is denoted by E.

Let C1, . . . , Cr be the irreducible components of C, and let deg Ci = mi. From
the Poincaré duality it follows that the abelinization of π1(P2 r C) is the group
H1(P2 r C) = (Zc1 ⊕ . . . ⊕ Zcr)/

∑
mici, where ci is the generator of H2(Ci)

corresponding to the complex orientation of Ci. The map ci 7→ 1, i = 1, . . . , r,
defines canonical epimorphisms π1(P2 r C) → Z/6Z → Z/2Z. We consider their
kernels

K2(C) = Ker[π1(P2 r C) → Z/2Z] = π1(X r C),

K6(C) = Ker[π1(P2 r C) → Z/6Z] = π1(Z r C)

and their abelinizations

K̄2(C) = H1(X r C), K̄6(C) = H1(Z r C),

respectively. The deck translations of the coverings p2 and p2 ◦ p3 induce certain
automorphisms tr2 of K̄2(C) and tr6 of K̄6(C), respectively; the deck translation
of p3 induces tr26 on K̄6(C). Group theoretically, tr2 and tr6 are induced by the
conjugation by the generators of Z/2Z and Z/6Z, respectively.

The Alexander polynomial ∆C(t) of a reduced sextic C can be defined as the
characteristic polynomial of the deck translation automorphism tr6 of the C-vector
space K̄6(C) ⊗ C = H1(Z r C;C). The definition in terms of K̄6 applies to any
group G equipped with a distinguished epimorphism G → Z/6Z. One always has
∆C(t) | (t− 1)(t6− 1)4, see [11], and ∆C(t) is defined over Q; hence, it is a product
of cyclotomic polynomials. If C is irreducible, then ∆C(t) | (t2 − t + 1)3, see [4].
Alternative definitions of the Alexander polynomial of a plane curve and its basic
properties can be found in the original paper [11] or recent survey [18]. For the
particular case of sextics, see [4] or [17].

3.1.1. Proposition. If C is an irreducible plane sextic with ∆C(t) 6= 1, then the
fundamental group π1(P2 r C) factors to the symmetric group S3.
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Proof. Since ∆C(t) 6= 1, the 3-group Hom(K̄6(C),F3) is nontrivial and its order 3
automorphism tr26 has a fixed element. Hence, π1(P2 r C) has a quotient G which
is included into the exact sequence

1 → Z/3Z → G → Z/6Z → 1,

so that tr26 acts identically on the kernel. (Here, tr6 is regarded as a generator of
the quotient Z/6Z.) Since the abelinization of π1(P2 r C) is Z/6Z, the extension
cannot be central. Hence, tr6 acts on the kernel via − id, the exact sequence splits,
and G factors to D6 = S3. ¤
3.2. Sextics of torus type. A reduced plane sextic C is said to be of torus type
if its equation can be represented in the form

(3.2.1) p3(x0, x1, x2) + q2(x0, x1, x2) = 0,

where p and q are some homogeneous polynomials of degree 2 and 3, respectively.
A sextic is of torus type if and only if it is the critical locus of a projection to P2 of
a cubic surface V ⊂ P3; the latter is given by 3x3

3 + 3x3p + 2q = 0. If C is reduced,
then V has isolated singularities and, hence, is irreducible.

A representation (3.2.1), considered up to scalar multiples, is called a torus
structure of C. Each torus structure gives rise to a conic Q = {p = 0} and a cubic
K = {q = 0}. With few exceptions, each conic Q is obtained in this way from
at most one torus structure. (In the exceptional cases, either C contains 2Q as a
non-reduced component or C consists of six lines through a single point.)

Each intersection point P ∈ Q ∩ K is a singular point for C; such points are
called inner singularities of C (with respect to the given torus structures). The
other singular points that C may have are called outer. A simple calculation using
normal forms at P shows that an inner singular point can be of type

– A3k−1, if K is nonsingular at P and (Q ·K)P = k, or
– E6, if K is singular at P and (Q ·K)P = 2, or
– adjacent to J10 (in the notation of [1]) otherwise.

Informally, the inner singularities and their types are due to the topology of the
mutual position of Q and K, whereas outer singularities occur accidentally in the
family (αp)3 + (βq)2 = 0 under some special values of parameters α, β ∈ C. A
sextic of torus type is called tame if all its singularities are inner. The rigid isotopy
classification of irreducible tame sextics is found in [4].

3.2.2. Remark. In the case of non-simple points, one should probably speak
about ‘outer degenerations’ of inner singularities. For example, if P is a node for K
and (Q ·K)P = 3, the generic inner singularity at P is of type J10 = J2,0. However,
under an appropriate choice of the parameters, it may degenerate to J2,1 or J2,2.
This fact makes the study of sextics of torus type with non-simple singularities
more involved.

3.2.3. Proposition. Let C be a reduced sextic of torus type. Then the group
π1(P2rC) factors to the reduced braid group B3/∆2 and to the symmetric group S3,
and the Alexander polynomial ∆C(t) has at least one factor t2 − t + 1.

Proof. All statements follow immediately from the fact that any sextic of torus
type can be perturbed to Zariski’s six cuspidal sextic C ′, which is obtained from Q
and K intersecting transversally at six points. Hence, there is an epimorphism
π1(P2 r C) → π1(P2 r C ′). As shown in [23], π1(P2 r C ′) = B3/∆2. ¤
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3.2.4. Definition. Let P be a simple singular point, and let Σ = Σ(P ) be its
resolution lattice. Define the weight w(P ) as follows:

w(P ) =
{

min
{− 3

2u2
∣∣ u ∈ Σ∗ r Σ, 3u ∈ Σ

}
,

0, if (discr Σ)⊗ F3 = 0.

The weight of a curve C is the sum of the weights of its singular points.

3.2.5. Lemma. One has w(A3k−1) = k, w(E6) = 2, and w(P ) = 0 otherwise. In
a standard basis {ei} of Σ(P ), the minimal value of − 3

2u2 as in Definition 3.2.4 is
attained, among other vectors, at e∗k or e∗2k for A3k−1 and at e∗2 or e∗4 for E6.

Proof. Since discrE6 = 〈 23 〉, the integer (3u)2 must be 6 mod 18. The maximal
negative integer with this property is −12 = (3e∗2)

2 = (3e∗4)
2.

Let Σ = A3k−1. Consider the standard representation of Σ as the orthogonal
complement of the characteristic element

∑
vi ∈

⊕
Zvi, v2

i = −1, 1 6 i 6 3k. An
element u as in the definition of weight has the form 1

3

∑
mivi with mi = 1 mod 3

and
∑

mi = 0. From the relation (m− 3)2 + (n + 3)2 = (m2 + n2)− 6[(m−n)− 3]
it follows that, whenever two coefficients in the representation of 3u differ more
than by 3, the value of (3u)2 can be increased. Hence, the coefficients of a square
maximizing vector 3u take only two values, which must be 2k copies of 1 and k
copies of (−2). Thus, the maximal square is (3u)2 = −6k.

For any other irreducible root system Σ one has (discr Σ)⊗ F3 = 0. ¤
3.2.6. Remark. From comparing the values given by Lemma 3.2.5 and those
found in [4] it follows that, whenever w(P ) 6= 0, one has w(P ) = d5/6(P ), where

d5/6(P ) = #
{
s ∈ Spec(P )

∣∣ s 6 −1/6
}

are the numbers introduced in [4] in conjunction with the Alexander polynomial.
(See [1] for the definition of spectrum.) Roughly, d5/6(P ) is the number of conditions
imposed by P on the linear system L5 of conics evaluating ∆C(t).

Comparing Lemma 3.2.5 and the list of inner singularities above, one concludes
that, for a curve C of torus type and conic Q = {p = 0} defined by a torus structure,
(Q ·C)P = 2w(P ) at each simple inner singular point P . (In particular, if all inner
points are simple, then w(C) >

∑
P∈Q w(P ) = 6.) The following theorem, which

we restate in terms of weights, asserts that this property is characteristic for conics
arising from torus structures.

3.2.7. Theorem (see [4] or [19]). Let C be a reduced sextic, and let Q be a conic
(not necessarily irreducible or reduced) intersecting C at simple singular points so
that, at each intersection point P , one has (Q · C)P = w(P ). Then C has a torus
structure (3.2.1) such that Q is the conic {p = 0}. ¤

The statement proved in [4] is stronger than Theorem 3.2.7: it suffices to require
that the inequality (Q · C)P > d5/6(P ) hold at each intersection point P . In
particular, the intersection points are not restricted a priori to A3k−1 or E6.

3.3. The case of simple singularities. Let C be a plane sextic with simple
singularities only. Then all singular points of X are also simple, and X̃ is a K3-
surface. Introduce the following notation:

– LC = H2(X̃) is the intersection lattice of X̃;
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– h ∈ LC is the class of the pull-back of a generic line in P2; one has h2 = 2;
– ΣC ⊂ LC is the sublattice spanned by the exceptional divisors;
– SC = ΣC ⊕ Zh;
– Σ̃C and S̃C are the primitive hulls of, respectively, ΣC and SC in LC ;
– KC ⊂ discrSC is the kernel of the finite index extension S̃C ⊃ SC .

As is known, LC is the only unimodular even lattice of signature (3, 19) (one can
take LC

∼= 2E8 ⊕ 3U, where U is the hyperbolic plane), and ΣC is the orthogonal
sum of the resolution lattices of all singular points of C.

When a curve C is understood, we omit subscript C in the notation.
The deck translation of the covering p2 : X → P2 lifts to X̃ and permutes the

components of Ẽ; hence, tr2 induces a certain automorphism of the Dynkin graph
of ΣC . The following lemma is an easy exercise using the embedded resolution Y
described in Section 3.1.

3.3.1. Lemma. For each simple singular point P of C, the automorphism induced
by tr2 on the Dynkin graph D of Σ(P ) is the only nontrivial symmetry of D, if P
is of type Ap or D2k+1, and the identity otherwise. As a consequence, the induced
automorphism of discrΣ(P ) is the multiplication by (−1). ¤

The root system ΣC is called the set of singularities of C. (Since ΣC admits a
unique decomposition into irreducible summands, it does encode the number and
the types of the singular points.) The triple h ∈ SC ⊂ LC is called the homological
type of C. It is equipped with a natural orientation θC of maximal positive definite
subspaces in S⊥C ⊗R; it is given by the real and imaginary parts of the class realized
in H2(X̃;C) = LC ⊗ C by a holomorphic 2-form on X̃.

3.3.2. Definition. An (abstract) set of (simple) singularities is a root system. A
configuration extending a set of singularities Σ is a finite index extension S̃ ⊃ S =
Σ⊕ Zh, h2 = 2, satisfying the following conditions:

(1) the primitive hull Σ̃ = h⊥
S̃

of Σ in S̃ has no roots other than those in Σ;
(2) there is no root r ∈ Σ such that 1

2 (r + h) ∈ S̃.

3.3.3. Definition. An abstract homological type extending a set of singularities Σ
is an extension of S = Σ ⊕ Zh, h2 = 2, to a lattice L ∼= 2E8 ⊕ 3U such that the
primitive hull S̃ of S in L is a configuration extending Σ. An abstract homological
type is encoded by the triple h ∈ S ⊂ L, so that Zh is a direct summand in S
and h⊥S = Σ. An isomorphism of two abstract homological types h′ ∈ S′ ⊂ L′

and h′′ ∈ S′′ ⊂ L′′ is an isometry L′ → L′′ taking h′ to h′′ and S′ onto S′′.
An orientation of an abstract homological type h ∈ S ⊂ L is an orientation θ of
maximal positive definite subspaces in S⊥L ⊗ R.

3.3.4. Theorem (see [7]). The homological type h ∈ SC ⊂ LC of a plane sextic
C with simple singularities is an abstract homological type; two sextics are rigidly
isotopic if and only if their oriented homological types are isomorphic. Conversely,
any oriented abstract homological type is isomorphic to the oriented homological
type of a plane sextic with simple singularities. ¤

The existence part of Theorem 3.3.4 was first proved by J.-G. Yang [22].

3.3.5. Remark. The principal steps of the classification of abstract homological
types are outlined in [7]. A configuration S̃ ⊃ S is determined by its kernel K,
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which plays an important rôle in the sequel. The existence of a primitive extension
S̃ ⊂ L reduces to the existence of an even lattice N of signature (2, 20− rk S̃) and
discriminant − discr S̃; it can be detected using Theorem 1.10.1 in [14]. Finally, for
the uniqueness one needs to know that

(1) a lattice N as above is unique up to isomorphism,
(2) each automorphism of discrN = −discr S̃ is induced by an isometry of

either N or Σ, and
(3) the homological type has an orientation reversing automorphism.

In most cases considered in this paper, (1) and (2) can be derived from, respectively,
Theorems 1.13.2 and 1.14.2 in [14], and (3) follows from the existence of a vector
of square 2 in N . (The case when N is a definite lattice of rank 2 is considered
in [7].) Below, when dealing with these existence and uniqueness problems, we just
state the result and leave details to the reader.

3.4. Irreducible sextics with simple singularities. Our next goal is to relate
certain properties of the fundamental group to the kernel KC of the extension
S̃C ⊃ SC . In this section, we deal with the case of irreducible sextics: it is more
transparent and quite sufficient for the purpose of this paper. Reducible sextics are
considered in Section 3.5.

3.4.1. Theorem (see [7]). A plane sextic C with simple singularities is irreducible
if and only if the group KC is free of 2-torsion. ¤
3.4.2. Corollary. For an irreducible sextic C with simple singularities one has
S̃C = Σ̃C ⊕ Zh and KC = Σ̃C/ΣC .

Proof. One has discr(Zh) = 〈 12 〉. Hence, the subgroup KC ⊂ discr ΣC ⊕ discr(Zh)
belongs entirely to discr ΣC , and the orthogonal sum decomposition of SC descends
to the extension. ¤
3.4.3. Corollary. For an irreducible sextic C with simple singularities one has
`2(discrΣC) + µ(C) 6 20.

Proof. Since KC is free of 2-torsion, one has `2(discr S̃) = `2(discr S) = `2(Σ) + 1.
On the other hand, `2(discr S̃) 6 rk S̃⊥ = 21− µ(C). ¤
3.4.4. Proposition. Let C be an irreducible sextic with simple singularities.
Then K̄2(C) splits into eigensubgroups, K̄2(C) = Ker(tr2−1) ⊕ Ker(tr2 +1), and
there are isomorphisms Ker(tr2−1) = Z/3Z and Ker(tr2 +1) = Ext(KC ,Z).

3.4.5. Remark. Proposition 3.4.4, as well as Theorem 3.5.1 below, extend to
plane curves of any degree (4m + 2), m ∈ Z: one should just replace Z/3Z with
Z/(2m + 1)Z everywhere in the statements.

Proof. One has K̄2(C) = H1(X̃ r (C̃ ∪ Ẽ)) and, since X̃ is simply connected, the
Poincaré duality establishes an isomorphism

K̄2(C) = Coker
[
in∗ : H2(X̃) → H2(C̃ ∪ Ẽ)

]
.

Let M = H2(C̃ ∪ Ẽ). Since [C̃] = 3h mod Σ in L, one has M = Σ ⊕ (Z · 3h), the
inclusion homomorphism in∗ : M → L is monic, and, using the universal coefficients
formula and replacing L with the primitive hull S̃ of M , one concludes that K̄2(C) =
Coker[S̃∗ → M∗] = Ext(S̃/M,Z). Due to Corollary 3.4.2, S̃/M = KC ⊕Z/3Z and,
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in view of Theorem 3.4.1, K̄2(C) is free of 2-torsion. Hence, K̄2(C) splits into
eigensubgroups of its order 2 automorphism tr2; obviously, h is tr2-invariant, and
the action of tr2 on KC ⊂ discrΣ is given by Lemma 3.3.1. ¤
3.4.6. Corollary. Let C be an irreducible sextic with simple singularities. Then
there is a canonical one to one correspondence between the set of normal subgroups
N ⊂ π1(P2 r C) with π1(P2 r C)/N ∼= D2n, n > 3, and the set of subgroups of
Tor(KC ,Z/nZ) isomorphic to Z/nZ.

Proof. The dihedral quotients D2n of the fundamental group are enumerated by
the epimorphisms Ker(tr2 +1) → Z/nZ modulo multiplicative units of (Z/nZ), and
the epimorphisms Ext(KC ,Z) → Z/nZ are the order n elements of the group

Hom(Ext(KC ,Z),Z/nZ) = Tor(KC ,Z/nZ).

(We use the natural isomorphism Hom(Ext(G,Z), F ) = Tor(G,F ), which exists for
any finite abelian group G and any abelian group F .) ¤
3.5. Reducible sextics with simple singularities. For completeness, we prove
an analog of Proposition 3.4.4 (and a more precise version of Theorem 3.4.1) for
reducible sextics. The results of this section are not used elsewhere in the paper.

3.5.1. Theorem. Let C be a reduced plane sextic with simple singularities, let
C1, . . . , Cr, r > 2, be the irreducible components of C, and let ci ∈ L = L∗ be the
class realized by the proper transform C̃i of Ci in X̃, 1 6 i 6 r. Then the following
statements hold:

(1) each residue ci mod S belongs to the subgroup K′C = {α ∈ KC | 2α = 0};
(2) the group K′C is generated by the residues ci mod S, which are subject to

the only relation
∑r

i=1 ci = 0 mod S; in particular, `2(KC) = r − 1;
(3) there is an isomorphism Tors K̄2(C) = (Z/3Z) ⊕ Ext(KC/K′C ,Z), so that

tr2 acts via +1 and −1 on the first and second summand, respectively ;
(4) the group K̄2(C) factors to (Z/3Z) ⊕ Ext(KC ,Z), so that tr2 acts via +1

and −1 on the first and second summand, respectively ;
(5) the free part K̄2(C)/ Tors K̄2(C) is a free abelian group of rank r − 1 with

the trivial action of tr2.

Proof. As in the proof of Proposition 3.4.4, one has a canonical isomorphism
K̄2(C) = Coker[S̃∗ → M∗], where M = H2(C̃ ∪ Ẽ). Now, M is a degenerate
lattice, its kernel being Ker[in∗ : M → L] ∼= Zr−1. (Indeed, modulo Σ each class ci

is homologous to a multiple of h.) This proves statement (5) and gives a natural
isomorphism Tors K̄2(C) = Ext(S̃/ in∗M,Z), which reduces (3) to (1) and (2).

To prove statement (4), consider the subgroup M0 ⊂ M spanned by the classes
of the exceptional divisors and the total fundamental class [C̃] = c1 + . . .+cr. Since
the quotient M/M0 is torsion free, in the diagram

0 −−−−→ 0 −−−−→ S̃∗ ==== S̃∗ −−−−→ 0
y

y
y

0 −−−−→ (M/M0)∗ −−−−→ M∗ −−−−→ M∗
0 −−−−→ 0

the rows are exact, and the Ker–Coker exact sequence results in an epimorphism
K̄2(C) → Ext(S̃/M0,Z). The isomorphism S̃/M0 = Z/3Z ⊕ KC is established
similar to Proposition 3.4.4, the two summands being S/M0 and Ker(tr2 +1).
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Let K̄2(C) → G be the quotient given by (4). The further quotient G/2G is
an F2-vector space on which tr2 acts identically. Hence, π1(P2 r C) factors to an
abelian 2-group G′ with `2(G′) > dim(G/2G) = `2(KC). On the other hand, the
abelinization of π1(P2 r C) is Zr−1. Thus, `2(KC) 6 r − 1.

Let P be a simple singular point, and let Γ1, . . . , Γs be the local branches at P .
The proper pull-back of Γi in X̃ represents a certain class γi ∈ Σ(P )∗, 1 6 i 6 s.
These classes can easily be found using the embedded resolution Y described in
Section 3.1; it is done in [22]. Below, the result is represented in terms of the basis
{e∗i } dual to a standard basis {ei} of Σ(P ). (The representation in terms of the
dual basis is very transparent geometrically: one should just list the exceptional
divisors that intersect the proper transform of a branch.)

A2k−1 : γ1 = γ2 = e∗k, E6 : γ1 = e∗3,

A2k : γ1 = e∗k + e∗k+1, E7 : γ1 = e∗6, γ2 = e∗7,

D2k+1 : γ1 = e∗1, γ2 = e∗2k−1, E8 : γ1 = e∗8.

D2k : γ1 = e∗1, γ2 = e∗2k−1, γ3 = e∗2k,

On a case by case basis one can verify that 2γi = 0 mod Σ(P ), i = 1, . . . , s, and
the residues γi mod Σ(P ) generate the subgroup {α ∈ discr Σ(P ) | 2α = 0} and are
subject to the only relation

∑s
i=1 γi = 0 mod Σ(P ) .

Now, it is obvious that each class ci, i = 1, . . . , r, has the form

ci =
1
2
(deg Ci)h +

∑
Γj⊂Ci

γj ,

the sum running over all singular points of C and all local branches belonging to Ci.
Hence, 2ci = 0 mod S. This proves statement (1) and shows that any nontrivial
relation between the residues ci mod S has the form

∑
i∈I ci = 0 mod S for some

subset I ⊂ {1, . . . , r}. If both I and its complement Ī are not empty, the curves
C ′ =

⋃
i∈I Ci and C ′′ =

⋃
i∈Ī Ci intersect in at least one point P , which is singular

for C. Then, not all local branches at P belong to C ′, and from the properties of
classes γj stated above it follows that the restriction of [C ′] =

∑
i∈I ci to Σ(P )∗ is

not 0 mod Σ(P ).
Since r residues ci mod S ∈ K′C are subject to a single relation, they generate

an F2-vector space of dimension r − 1. On the other hand, as is shown above,
dimK′C = `2(KC) 6 r − 1. This completes the proof of (2) and, hence, (3). ¤

4. Curves with simple singularities

4.1. Curves of torus type: the statements. In this section, we state our
principal results concerning sextics of torus type. Proofs are given in Section 4.2.

4.1.1. Theorem. For an irreducible plane sextic C with simple singularities, the
following statements are equivalent:

(1) C is of torus type;
(2) the Alexander polynomial ∆C(t) is nontrivial;
(3) the group π1(P2 r C) factors to the reduced braid group B3/∆2;
(4) the group π1(P2 r C) factors to the symmetric group S3.
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A nine cuspidal sextic is an irreducible sextic with nine ordinary cusps, i.e., set
of singularities 9A2. These curves are well known; they were used by Zariski to
prove the existence of non-special six cuspidal sextics. From the Plücker formulas
it follows that any nine cuspidal sextic is dual to a nonsingular cubic curve. In
particular, all nine cuspidal sextics are rigidly isotopic.

4.1.2. Theorem. Let C be an irreducible plane sextic with simple singularities,
other than a nine cuspidal sextic. Then there are canonical bijections between the
following sets:

(1) the set of torus structures on C;
(2) the set of normal subgroups N ⊂ π1(P2 r C) with π1(P2 r C)/N ∼= S3;
(3) the projectivization of the F3-vector space KC ⊗ F3.

In the exceptional case of a nine cuspidal sextic, still there is a bijection (2) ↔ (3)
and an injection (1) ↪→ (3); the image of the latter injection misses one point.

The exceptional case in Theorem 4.1.2 deserves a separate statement.

4.1.3. Theorem. Let C be a nine cuspidal sextic. Then there exists one, and
only one, quotient π1(P2 rC) → S3 such that the resulting triple plane p : V → P2

ramified at C is not a cubic surface. All nine cusps of C are cusps (Whitney pleats)
of p, and the covering space V is a nonsingular surface of Euler characteristic zero.

Last three theorems give a detailed description of sextics of torus type. In
particular, Theorem 4.1.5 lists all sextics admitting more than one torus structure.
Recall that the weight w(C) of a sextic C is defined as the total weight of all its
singular points, see Definition 3.2.4.

4.1.4. Theorem. Let C be an irreducible sextic with simple singularities. If the
weight w(C) is 7 (respectively, 8 or 9), then KC = (Z/3Z)w(C)−6 and C has exactly
one (respectively, four or twelve) torus structures. If w(C) = 6, then KC = Z/3Z
or KC = 0 and C has one or none torus structure, respectively. If w(C) < 6, then
`3(KC) = 0 and C is not of torus type.

4.1.5. Theorem. Let C be an irreducible sextic with simple singularities. If
w(C) = 9, then C is a nine cuspidal sextic. If w(C) = 8, then C has one of
the following sets of singularities

8A2, 8A2 ⊕A1, A5 ⊕ 6A2, A5 ⊕ 6A2 ⊕A1,

2A5 ⊕ 4A2, E6 ⊕ 6A2, E6 ⊕A5 ⊕ 4A2,

each set being realized by at least one rigid isotopy class.

4.1.6. Theorem. Let C be an irreducible sextic with simple singularities and of
weight w(C) = 6, and assume that C has a singular point of weight zero other than
a simple node (type A1). Then KC = Z/3Z and C has exactly one torus structure.

4.1.7. Remark. In the remaining case, w(C) = 6 and all singular points of weight
zero are simple nodes, the same set of singularities may be realized by both sextics of
torus type and those not of torus type; they differ by their Alexander polynomials,
see abundant vs. non-abundant curves in [4] and [7]. The first example of this kind
is due to Zariski [24].
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4.1.8. Remark. It is quite straightforward to enumerate all sets of singularities
realized by sextics of torus type; however, the resulting list is too long and rather
meaningless. At present, it is unclear whether each set of singularities is realized
by at most one rigid isotopy class of sextics of torus type. In many cases, general
theorems of [14] do not apply and, considering the amount of calculations involved,
we leave this question open.

4.2. Curves of torus type: the proofs. Given an integer w > 0, denote by
Dw the direct sum of w copies of 〈− 2

3 〉; we regard Dw as an F3-vector space. Let
α1, . . . , αw be some generators of the summands. An isometry of Dw is called
admissible if it is the composition of a permutation of α1, . . . , αw and multiplying
some of them by (−1). (One has Dw = discr(wA2), and the admissible isometries
are those induced by the isometries of wA2.) Define the weight w(δ) of an element
δ ∈ D as the number of the generators α1, . . . , αw appearing in δ with non-zero
coefficients. Clearly, δ is isotropic if and only if w(δ) is divisible by 3.

Let C be a reduced (not necessarily irreducible) sextic with simple singularities,
and let w = w(C) be the weight of C. Consider the subgroup G = GC ⊂ discrΣC

generated by the elements of order 3. Recall that, for each singular point P of
positive weight w(P ), the intersection G∩discrΣ(P ) is generated by a single element
βP of square −2w(P )/3. Hence, G admits an isometric embedding to Dw: split
the set G = {α1, . . . , αw} into disjoint subsets DP , assigning w(P ) generators to
each singular point P of positive weight, and map βP to

∑
αi∈DP

αi. Using this
embedding, which is defined up to admissible isometry of Dw, one can speak about
the weights of the elements of G.

4.2.1. Lemma. In the notation above, an extension S̃ of the lattice S = Σ⊕ Zh,
h2 = 2, defined by an isotropic subgroup K ⊂ G satisfies condition 3.3.2(1) in the
definition of configuration if and only if K has the following property :

(∗) each nonzero element of K has weight at least 6.

Proof. Given γ ∈ K, the maximal square of a vector u ∈ S̃ such that u mod S = γ
is − 2

3w(γ). This maximum equals (−2) if and only if w(γ) = 3. ¤
4.2.2. Lemma. Let w = 9 (respectively, w = 8 or w = 6, 7), and let K ⊂ Dw be
an isotropic subspace satisfying condition 4.2.1(∗). Then dimK 6 3 (respectively,
dimK 6 2 or dimK 6 1). Furthermore, a subspace Kw ⊂ Dw of maximal dimension
is unique up to admissible isometry of Dw; it is generated by

w = 9: α1 + . . . + α9, α1 + α2 + α3 − α4 − α5 − α6, and

α1 − α2 + α4 − α5 + α7 − α8;
w = 8: α1 + . . . + α6 and − α3 − α4 + α5 + . . . + α8;
w 6 7: α1 + . . . + α6.

Proof. All statements can be proved by a case by case analysis. A more conceptual
proof for the case w = 8 is given in [8], Lemma 5.2. This result implies the dimension
estimate for w 6 7 (as the subgroup of dimension 2 involves all eight generators
of D8) and w = 9. The uniqueness is obvious in the case w 6 7; in the case w = 9
it can be proved geometrically: two non-equivalent isotropic subspaces of D9 of
dimension 3 and satisfying 4.2.1(∗) would give rise to two distinct configurations
extending 9A2 and, in view of Theorem 3.3.4, to two rigid isotopy classes of nine
cuspidal sextics. ¤
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4.2.3. Corollary. Let w 6 9, and let Kw ⊂ Dw be the maximal isotropic subspace
given by Lemma 4.2.2. If w 6 8, then each nonzero element of Kw has weight 6. If
w = 9, then Kw has two elements of weight 9 and 24 elements of weight 6. ¤
4.2.4. Lemma. Let C be as above and w = w(C). Assume that the subgroup
GC ⊂ Dw contains the maximal isotropic subspace Kw given by Lemma 4.2.2. If
w = 8 (respectively, w = 9), then for each singular point P of C one has w(P ) 6 2
(respectively, w(P ) 6 1).

Proof. According to the definition of the embedding GC ↪→ Dw, the maximal weight
of a singular point is bounded by the maximal number n of generators α1, . . . , αw

of Dw appearing in each element γ ∈ Kw with the same coefficient (depending
on γ). From the description of Kw given in Lemma 4.2.2 it follows that n = 1 for
w = 9 and n = 2 for w = 8. ¤
4.2.5. Lemma. In the notation above, there is a natural bijection between the
torus structures of C and pairs of opposite elements ±γ ∈ KC ∩ G of weight 6.

Proof. The statement is essentially contained in [7], where the case w(C) = 6 is
considered. Each conic Q as in Theorem 3.2.7 lifts to two disjoint rational curves
Q̃1, Q̃2 in X̃, and a simple calculation using the resolution Y described in Section 3.1
shows that the fundamental classes [Q̃i] ∈ L have the form [Q̃i] = h +

∑
P∈Q β̄i

P ,
where, in a standard basis {ei} of Σ(P ), the elements β̄1,2

P ∈ Σ(P )∗ are defined as

β̄1
P = e∗k, β̄2

P = e∗2k for P of type A3k−1,

β̄1
P = e∗2, β̄2

P = e∗4 for P of type E6.

One has (β̄i
P )2 = − 2

3w(P ), see Lemma 3.2.5, and the residues β̄1,2
P mod Σ(P ) are

the two opposite nontrivial order 3 elements of discr Σ(P ). Since 2
∑

P∈Q w(P ) =
C · Q = 12, the residues ([Qi] − h) mod Σ form a pair of opposite elements of KC

of weight 6.
Conversely, any order 3 element γ ∈ KC can be represented (possibly, after

reordering β̄1’s and β̄2’s) as the residue of the class γ̄ =
∑

P∈J β̄1
P , the sum running

over a subset J of the set of singular points with
∑

P∈J w(P ) = w(γ). If w(γ) = 6,
one has (γ̄ + h)2 = −2 and, since obviously γ̄ + h ∈ Pic X̃, the Riemann-Roch
theorem implies that γ̄ + h is realized by a (possibly reducible) rational curve Q̃

in X̃. The image of Q̃ in P2 is a conic Q as in Theorem 3.2.7. ¤
4.2.6. Remark. In the proof of Lemma 4.2.5, the lifts Q̃1, Q̃2 are the connected
components of the proper pull-back of Q provided that Q is nonsingular at each
singular point of C. If Q is singular at a point P of C, then P is of type A3k−1,
k > 2, and a proper pull-back realizes (locally) a class of the form e∗1 + e∗k−1. In
this case, one should include into Q̃1 several exceptional divisors, according to the
relation e∗1 + e∗k−1 + e1 + . . . + ek−1 = e∗k. We leave details to the reader.

4.2.7. Lemma. Let C be an irreducible sextic with simple singularities, and let
w(C) > 7. Then KC has elements of order 3.

Proof. According to [4], the Alexander polynomial ∆C(t) is (t2 − t + 1)s, where s
is the superabundance of the linear system L5 of conics satisfying certain explicitly
described conditions at the singular points of C. In particular, each singular point P
of positive weight w(P ) imposes d5/6(P ) = w(P ) conditions, see Remark 3.2.6.
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Hence, the virtual dimension of L5 is less than −1 and ∆C(t) 6= 1. The statement
of the lemma follows from Proposition 3.1.1 and Corollary 3.4.6. ¤
Proof of Theorems 4.1.4 and 4.1.5. First, note that the group KC has no ele-
ments of order 9. Indeed, order 9 elements are only present in discrA8, 2 discrA8,
or discrA17. However, none of these discriminants contains an order 9 element
whose square is 0 mod 1

3Z (so that it could be compensated by the square of an
order 3 element coming from other singular points).

Fix an irreducible sextic C with simple singularities and introduce the following
notation:

– w = w(C) = the weight of C;
– m = the total number of the singular points P of C with w(P ) > 0;
– e = the number of singular points of type E6;
– µ′ = the total Milnor number of the singular points of C of weight zero;
– κ = dimKC ⊗ F3.

The total Milnor number of the singularities of C is µ = 3w − m + e + µ′; since
m 6 w, the inequality µ 6 19 implies that w 6 9.

One has `3(discr Σ) = m. Hence, m − 2κ 6 `3(discr S̃) 6 rk S̃⊥ = 21 − µ, i.e.,
2κ > 3w + e + µ′ − 21. This inequality, combined with Lemma 4.2.2, yields:

– if w = 9, then κ = 3 and e = µ′ = 0;
– if w = 8, then κ = 2 and e + µ′ 6 1;
– if w = 7, then κ = 1 (due to Lemma 4.2.7) and e + µ′ 6 2;
– if w = 6, then κ 6 1 and e + µ′ 6 2κ + 3.

In all cases with w > 6 one has µ′ 6 5. Furthermore, whenever w > 7, the subgroup
KC ⊂ GC ⊂ Dw is the maximal subspace Kw given by Lemma 4.2.2.

To complete the proof of Theorem 4.1.4, it remains to show that, whenever w > 6
and p 6= 3 is a prime, the group KC is free of p-torsion. Since C is irreducible, KC

is free of 2-torsion, see Theorem 3.4.1. If p > 5, p-torsion elements are only present
in the discriminants discrAi with p | (i + 1). If w(Ai) = 0, then i 6 µ′ 6 5 and the
only possibility is p = 5, i = 4. If w(Ai) > 0, then 3p | (i + 1) and, since i 6 19,
the only possibility is p = 5, i = 14. In this case m 6 w − 4, and the inequality
µ 6 19 implies that e+µ′ 6 3, i.e., there are no other points with order 5 elements
in the discriminant. Thus, one has p = 5 and the 5-torsion of discr Σ comes either
from a single point of type A4 or from a single point of type A14. However, neither
discrA4 nor discrA14 have an isotropic element of order 5.

Prove Theorem 4.1.5. If w(C) = 9, the statement follows immediately from
Lemma 4.2.4 and the fact that µ′ = 0. If w(C) = 8, the possible sets of singularities
are easily enumerated using the inequality e + µ′ 6 1 above and Lemma 4.2.4,
which only allows A1, A2, or E6 for a singularity of positive weight. The sets of
singularities 2A5 ⊕ 4A2 ⊕A1 and 3A5 ⊕ 2A2 are ruled out by Corollary 3.4.3; the
realizability of the seven sets listed in the theorem follows from Theorem 3.3.4 and
Theorem 1.10.1 in [14], see Remark 3.3.5. ¤
Proof of Theorem 4.1.6. Similar to Lemma 4.2.7, we use the results of [4] (see
Remark 3.2.6) to evaluate the Alexander polynomial ∆C(t). For each singular
point P other than A1, one has d5/6(P ) > 1. Hence, the total number of conditions
on the conics in L5 is

∑
d5/6(P ) > w(C)+1 = 7. Then, the virtual dimension of L5

is less than −1, one has ∆C(t) 6= 1, from Proposition 3.1.1 and Corollary 3.4.6 it
follows that KC has 3-torsion, and Theorem 4.1.4 applies. ¤
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Proof of Theorem 4.1.1. The implication (3) =⇒ (4) is obvious, (2) =⇒ (4) is given
by Proposition 3.1.1, and (1) =⇒ (3) and (1) =⇒ (2) are given by Proposition 3.2.3.
Thus, it remains to show that (4) implies (1).

Let C satisfy condition (4). Due to Corollary 3.4.6, the group KC has elements
of order 3 and, comparing Theorem 4.1.4 and Lemma 4.2.2, one concludes that
KC ⊂ GC ⊂ Dw(C) is the maximal isotropic subspace given by Lemma 4.2.2. Then,
Corollary 4.2.3 and Lemma 4.2.5 imply that C is of torus type. ¤
Proof of Theorem 4.1.2. The bijection (2) ↔ (3) is given by Corollary 3.4.6: since
KC has no elements of order 9, the order 3 subgroups in Tor(KC ,F3) are in a one
to one correspondence with those in KC ⊗ F3.

The bijection (1) ↔ (3) is that given by Lemma 4.2.5: in view of Theorems 4.1.4
and 4.1.5, the only exception is the pair of opposite elements of weight 9 that exist
in the case of a nine cuspidal sextic. ¤
Proof of Theorem 4.1.3. The triple plane described in the statement corresponds
to the two elements ±γ ∈ KC of weight 9. In general, the cusps of the triple plane
arising from an element γ ∈ KC can be detected as the singular points P of C with
the following property:

(∗) the composition π1(UP rC) → π1(P2 rC) → S6 is an epimorphism, where
UP ⊂ P2 is a Milnor ball about P .

Let Ũ be the minimal resolution of the double covering of UP ramified at C. Then,
as in Proposition 3.4.4, the abelinization of the kernel of the corresponding homo-
morphism π1(UP r C) → Z/2Z is given by H1(∂Ũ) = discr H2(Ũ) = discr Σ(P ).
Hence, a point P has property (∗) if and only if the restriction of γ to discr Σ(P ) =
Σ(P )∗/Σ(P ) is nonzero; it holds for all nine cusps if w(γ) = 9.

The Euler characteristic of V is found from the Riemann-Hurwitz formula. ¤
4.3. Other curves admitting dihedral coverings. An irreducible sextic is
called special if its fundamental group factors to a dihedral group D2n, n > 3.
Theorem 4.1.1 implies that all irreducible sextics of torus type are special. In this
section, we enumerate other special sextics with simple singularities.

4.3.1. Theorem. Let C be an irreducible plane sextic with simple singularities.
Then the group Ker(tr2 +1) is either (Z/3Z)m, 0 6 m 6 3, or Z/5Z, or Z/7Z.

4.3.2. Corollary. Let C be an irreducible plane sextic with simple singularities.
Then any dihedral quotient of π1(P2 r C) is either D6

∼= S3 or D10 or D14. ¤
4.3.3. Theorem. There are two rigid isotopy classes of special sextics with simple
singularities whose fundamental group factors to D14; their sets of singularities are
3A6 and 3A6⊕A1. The set of singularities 3A6 can also be realized by a non-special
irreducible sextic.

The two special sextics above can be characterized as follows: there is an ordering
P1, P2, P3 of the three A6 points such that, for every cyclic permutation (i1i2i3),
there is a conic whose local intersection index with C at Pik

equals 2k.

4.3.4. Theorem. There are eight rigid isotopy classes of special sextics with sim-
ple singularities whose fundamental group factors to D10; each class is determined
by its set of singularities, which is one of the following :

4A4, 4A4 ⊕A1, 4A4 ⊕ 2A1, 4A4 ⊕A2,

A9 ⊕ 2A4, A9 ⊕ 2A4 ⊕A1, A9 ⊕ 2A4 ⊕A2, 2A9.
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The sets of singularities 4A4, 4A4 ⊕A1, A9 ⊕ 2A4, A9 ⊕ 2A4 ⊕A1, and 2A9 are
also realized by non-special irreducible sextics.

The eight special sextics above can be characterized as follows: there are two
conics Q1, Q2 with the following properties:

– Q1 and Q2 intersect transversally at each singular point of C of type A4,
and they have a simple tangency at each singular point of C of type A9;

– at each singular point of type A4, the local intersection indices of C with
the two conics are 2 and 4;

– at each singular point of type A9, the local intersection indices of C with
the two conics are 4 and 8.

4.3.5. Remark. The Alexander polynomials of all curves listed in Theorems 4.3.3
and 4.3.4 are trivial, e.g., due to Proposition 3.1.1. Hence, the sets of singularities
3A6, 4A4, 4A4 ⊕ A1, A9 ⊕ 2A4, A9 ⊕ 2A4 ⊕ A1, and 2A9 that are realized by
both special and non-special curves give rise to Alexander equivalent Zariski pairs
of irreducible sextics. This means that two irreducible curves C1, C2 share the
same set of singularities and Alexander polynomial but have non-diffeomorphic
complements P2 rCi (see [2] for precise definitions). In our case, the fundamental
groups π1(P2rC) differ: one does and the other does not admit dihedral quotients.

Proof of Theorem 4.3.1. Since C is irreducible, KC is free of 2-torsion. The case
when KC has 3-torsion is considered in Theorem 4.1.4. For a prime p > 5, any
simple singularity whose discriminant has elements of order pa is of type Ai with
pa | (i + 1). Since the total Milnor number µ 6 19, one has pa = 5, 7, 11, 13, 17,
or 19. In the last four cases, p = 11, 13, 17, or 19, the set of singularities has at
most one point with p-torsion in the discriminant, which is of type Ap−1; however,
discrAp−1 = 〈−p−1

p 〉 does not have isotropic elements of order p. The remaining
cases p = 7 and p = 5 are considered in Theorems 4.3.3 and 4.3.4, respectively. In
particular, it is shown that the p-primary part of KC is Z/pZ. Comparing the sets
of singularities listed in Theorems 4.3.3 and 4.3.4, one immediately concludes that
KC cannot have both 7- and 5-torsion. ¤

Proof of Theorem 4.3.3. Since µ 6 19, the part of Σ whose discriminant has 7-
torsion is either aA6, 1 6 a 6 3, or A13⊕A6; it is easy to see that only discr(3A6)
contains an order 7 isotropic element, and it is unique up to isometry of Σ. Be-
sides, since discr(3A6) = (Z/7Z)3 and the form is nondegenerate, this group cannot
contain an isotropic subgroup larger than Z/7Z. These observations restrict the
possible sets of singularities to those listed in the statement. The existence of all
three curves mentioned in the statement and the uniqueness of the two special
curves are straightforward, see Theorem 3.3.4 and Remark 3.3.5; the set of singu-
larities 3A6 ⊕A1 cannot be realized by a non-special curve since for such a curve
one would have `7(discr S̃) = 3 > 2 = rk S̃⊥.

The characterization of the special curves in terms of conics is obtained similar
to Lemma 4.2.5. Let Pi, i = 1, 2, 3, be the three points of type A6, and denote by
eij , j = 1, . . . , 6, a standard basis of Σ(Pi). Then, up to a symmetry of the Dynkin
graph, an isotropic element in discrΣ is given by γ = e∗11 + e∗22 + e∗33 mod Σ. The
class e∗11 + e∗22 + e∗33 + h has square (−2); hence, it is realized by a rational curve
in X̃, which projects to a conic in P2. The two other conics are obtained from the
classes 2γ = e∗12 + e∗24 + e∗36 mod Σ and 3γ = e∗13 + e∗26 + e∗32 mod Σ. Conversely,
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each conic as in the statement lifts to a rational curve in X̃ that realizes an order 7
element in discr Σ. ¤
Proof of Theorem 4.3.4. The singularities whose discriminants contain elements of
order 5 are A4, A9, A14, and A19. The only imprimitive finite index extension of
2A4 is 2A4 ⊂ E8; it violates condition 3.3.2(1) in the definition of configuration.
With this possibility ruled out, the discriminants containing an order 5 isotropic
subgroup are those of 4A4, A9⊕2A4, and 2A9. In each case, the subgroup is unique
up to a symmetry of the Dynkin graph; it is generated by the residue γ = γ̄ mod Σ,
where γ̄ is given by

e∗11 + e∗21 + e∗32 + e∗42, f∗14 + e∗11 + e∗21, and f∗14 + f∗22,

respectively. Here, {eij}, j = 1, . . . , 4, is a standard basis in the i-th copy of A4,
and {fkj}, j = 1, . . . , 9, is a standard basis in the k-th copy of A9. Similar to
Lemma 4.2.5, these expressions give a characterization of the special curves in
terms of conics: the class γ̄ + h has square (−2) and is realized by a rational curve
in X̃; its projection to P2 is one of the two conics. The other conic is obtained from
a similar representation of 2γ.

The rest of the theorem is an application of Theorem 3.3.4 and Nikulin’s results
on lattices. The sets of singularities 4A4 ⊕ 3A1, A9 ⊕ 2A4 ⊕ 2A1, and 2A9 ⊕A1

cannot be realized by irreducible curves due to the genus formula (alternatively,
due to Corollary 3.4.3). The sets of singularities 4A4 ⊕ A2 ⊕ A1 and 4A4 ⊕ A3

do not extend to abstract homological types due to Theorem 1.10.1 in [14], see
Remark 3.3.5. The (non-)existence of the other curves mentioned in the statement
is given by Theorem 3.3.4, see Remark 3.3.5. The uniqueness of the special curves
is also given by Theorem 3.3.4: in most cases one can apply either Theorem 1.14.2
in [14] or Theorem 1.13.2 in [14] and the fact that all automorphisms of discrS
are realized by isometries of Σ. (The last statement is true in all cases except
A9 ⊕ 2A4 ⊕A1.) We leave details to the reader. ¤

5. Some curves with a non-simple singular point

In this concluding section we try to substantiate Conjecture 1.1.1(1) extended to
all irreducible sextics. Here, we consider sextics with a non-simple singular point
adjacent to X9, i.e., a point of multiplicity 4 or 5. The only remaining case of a
singular point adjacent to J10 will be dealt with in a separate paper.

5.1. Sextics with a singular point of multiplicity 5. This case is trivial: due
to [5], any irreducible sextic with a singular point of multiplicity 5 has abelian
fundamental group and, hence, trivial Alexander polynomial. Note that Proposi-
tion 3.2.3 implies that none of such sextics is of torus type.

5.2. Sextics with a singular point of multiplicity 4. The rigid isotopy classi-
fication of plane curves C with a singular point P of multiplicity deg C−2 is found
in [3]. Let m = deg C. In appropriate coordinates (x0 : x1 : x2) the curve is given
by a polynomial of the form

x2
0a(x1, x2) + x0b(x1, x2) + c(x1, x2),

where a, b, and c are some homogeneous polynomials of degree m−2, m−1, and m,
respectively. The discriminant D = b2−4ac has degree 2m−2. (It is required that
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D is not identically zero.) Since C is assumed irreducible, a, b, and c should not
have common roots. Let xi, i = 1, . . . , k, be all distinct roots of aD. The formula
of C is defined as the (unordered) set {(pi, qi)}, i = 1, . . . , k, where pi and qi are
the multiplicities of xi in a and D, respectively. The formula of an irreducible curve
of degree m has the following properties:

(1)
∑k

i=1 pi = m− 2, and
∑k

i=1 qi = 2m− 2;
(2) for each i, either pi = qi or the smallest of pi, qi is even;
(3) at least one of qi is odd.

An elementary equivalence of a formula is replacing two pairs (1, 0), (0, 1) with
one pair (1, 1). Geometrically, this procedure means that a ‘vertical’ tangency
point of C disappears at infinity making P an inflection point of one of its smooth
branches. Clearly, this is a rigid isotopy.

5.2.1. Theorem (see [3]). Two irreducible curves of degree m, each with a singular
point of multiplicity m−2, are rigidly isotopic if and only if their formulas are related
by a sequence of elementary equivalences and their inverses. Any set of pairs of
nonnegative integers satisfying conditions (1)–(3) above is realized as the formula
of an irreducible curve of degree m. ¤

Let Gp, p = 2, 4, be the group given by

Gp =
〈
u, v

∣∣ up = vp, (uv)2u = v(uv)2, v4 = (uv)5
〉
.

In [5], it is shown that |G4| = ∞ and |G2| = 30; there is a split exact sequence

1 → F5[t]/(t + 1) → G2 → Z/6Z → 1,

t being the conjugation action on the kernel of a generator of Z/6Z. The Alexander
polynomials of both G2 and G4 are trivial.

5.2.2. Theorem. Irreducible sextics C with a singular point of multiplicity 4 and
nonabelian fundamental group form seven rigid isotopy classes, one class for each
of the following formulas:

– {(2, 0), (2, 0), (0, 5), (0, 5)}, with π1(P2 r C) = G2
∼= D6 × (Z/3Z);

– {(4, 0), (0, 5), (0, 5)}, with π1(P2 r C) = G4;
– {(2, 2), (2, 2), (0, 3), (0, 3)};
– {(2, 5), (2, 2), (0, 3)};
– {(2, 5), (2, 5)};
– {(4, 4), (0, 3), (0, 3)};
– {(4, 7), (0, 3)}.

In the first two cases, the curve is not of torus type and one has ∆C(t) = 1; in the
last five cases, the curve is of torus type and one has π1(P2 r C) = B3/∆2.

Proof. The fundamental group of a curve C of degree m with a singular point of
multiplicity m− 2 is described in [5]. If m = 6, it is easy to enumerate all formulas
satisfying conditions (1)–(3) above and select those that give rise to non-abelian
fundamental groups. Then, Theorem 5.2.1 would apply to give one rigid isotopy
class for each formula found.

In fact, for π1(P2 r C) not to be abelian, one must have pi 6= 1 for all i; since
also

∑
pi = 4, the nonzero entries pi are either 2 and 2 or 4. Another necessary
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condition is that q = g.c.d.{qi − pi}qi>pi
must be larger than 1 and, in view of (3)

above, q must also be odd. These restrictions leave the seven formulas listed in the
statement.

For the last five formulas one has qi > pi and 3 | (qi−pi) for each i. Hence, a is a
square, a |D, and D/a is a cube. Let a = p2 and D = −4p2s3. Then p | b, b = 2pq,
and c = q2 + s3. Thus, the equation of C has the form

(x0p + q)2 + s3 = 0,

i.e., C is of torus type. ¤
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