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A DIVISIBILITY THEOREM

FOR THE ALEXANDER POLYNOMIAL

OF A PLANE ALGEBRAIC CURVE

Alexander Degtyarev

Abstract. An upper estimate for the Alexander polynomial of an algebraic

curve is obtained, which sharpens Libgober’s estimate in terms of the local
polynomials at the singular points of the curve: only those singular points
may contribute to the Alexander polynomial of the curve which are in excess

of the hypothesis of Nori’s vanishing theorem.

Introduction

Consider an irreducible algebraic curve B ⊂ Cp2 of degree n, and denote
by π the fundamental group π1(Cp2 r B) of its complement. In general,
studying this group is a difficult problem (see, e.g., Moishezon [Mo], Nori [N],
Oka [O], and Zariski [Z] for a survey of the few known results and examples
in this direction; some newer results can be found in Bartolo [B], Bartolo,
Tokunaga [BT], Degtyarev [D3], Dimca [Di], Tokunaga [T], and Tono [To]).
That is why O. Zariski [Z] suggested, as the first approximation to π, to study
its Alexander polynomial ∆B(t), which can be defined as follows: Denote by
K = [π, π] the commutant of π, and by K ′ = [K, K], its second commutant,
i.e., the subgroup generated by the commutators [x1, x2] for all x1, x2 ∈ K.
Then π/K = Zn acts on the quotient K/K ′ (which is an abelian group of
finite rank), and one can define ∆B(t) to be the characteristic polynomial of
the automorphism of K/K ′ corresponding to any generator of π/K.

It is well known that, if B is a non-singular curve, then π = Zn, and, hence,
∆B(t) = 1. Hence, one can expect that there is a relationship between the
complexity of ∆B(t) and singularities of B. In order to describe this influence,
A. Libgober [L] introduced the notion of local Alexander polynomial ∆B|O(t)
of B at a singular point O, which, by definition, is just the ordinary Alexander
polynomial of the link cut by B on the boundary of a small ball about O. The
result of Libgober is the following:

Theorem (see Libgober [L]). ∆B(t) divides the product
∏

∆B|Oi
(t) over all

the singular points Oi of B.

Another result in this direction is due to Nori [N], who proved the following
generalized version of the famous Zariski conjecture on nodal curves:
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Theorem (see Nori [N]). Let B be a reduced ample divisor on a projective
algebraic surface X. Consider an embedded resolution σ : Y → X of all the
singular points of B other than nodes, and for each irreducible component Bi

of B denote by B̃i its proper transform in Y and by δ(B̃i) the number of nodes
of B̃i. If σ can be chosen so that B̃2

i > 2δ(B̃i) for all i, then the kernel of the
inclusion homomorphism π1(X r B) → π1(X) is an abelian subgroup whose
centralizer has finite index.

In the classical case X = Cp2 Nori’s theorem implies that, under the hy-
pothesis, π1(Cp2 r B) is abelian and, in particular, ∆B(t) = 1.

The main result of this paper occupies an intermediate position between
the above two theorems:

Main theorem. Suppose that the set of the singular points of B is split into
two subsets, S+ and Sexc, so that there exists a resolution of the points in S+

such that the proper transform of B has positive self-intersection. Then ∆B(t)
divides the product

∏
∆B|Oi

(t) over all the points Oi ∈ Sexc

Roughly speaking, this result means that only those singular points of B
may affect ∆B(t) (in the way of Libgober’s theorem), which are in excess of
the hypothesis of Nori’s theorem. Moreover, one can estimate the multiplic-
ities of different roots of ∆B(t) separately, each time trying to gather in S+

the singular points whose local Alexander polynomials vanish at the root in
question.

Remark. Note that the local Alexander polynomial of a node is t− 1. Hence,
nodes never contribute to the Alexander polynomial of an irreducible curve
(see [Z]) and one can always keep them in Sexc.

Remark. In fact, we prove a slightly stronger result, dealing with an arbitrary
ample divisor on an algebraic surface; see Theorem 4.1 for details.

Acknowledgments. I would like to express my profound gratitude to O. Vi-
ro, who drew my attention to the problem and introduced me to the subject,
and to A. Libgober, whose ideas influenced significantly my work and who,
finally, convinced me to publish this result.

1. Alexander polynomial of an algebraic curve

The definition of ∆ given in Introduction applies to any affine algebraic
surface (like Cp2 r B) or, more generally, to any topological space Y with
H1(Y ) = Zn (or with a preferred homomorphism H1(Y ) → Zn, which in the
algebraic case can be given by a line bundle E ∈ H1(Y ;O∗

Y ) with E⊗n ∼= OY ).
Then the (rational) Alexander polynomial is defined to be the characteristic
polynomial of the deck translation action on H1(Yn; Q), where Yn is the cyclic
covering of Y determined by the above H1(Y ) → Zn. However, it is traditional
for the subject, like in knot theory, to include into the definition the original
curve B (which plays the rôle of the pereferical structure). Among other
advantages, this assures the correct branching at infinity. (Another, more
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practical, reason for treating the Alexander polynomial as an invariant of the
curve rather than its complement is that it is its relation to the singularities
of the curve that is studied.) Another advantage of considering a pair (X, B)
instead of the complement Y = X r B is that it provides for a canonical
compactification X ′ of Yn, and, as shown in Libgober [L], if B is irreducible
an reduced, the first cohomology of the desingularization of X ′ differ from
that of Yn by an easily controllable part with trivial deck translation action
which comes from X. (In [L] one can also find a survey of various definition
of the Alexander polynomial and relation between them.)

Thus, let B ⊂ X be an algebraic curve in a projective algebraic surface X,
and let E ∈ H1(X;O∗

X) be a class such that nE = [B] for some positive
integer n. Consider some linear bundles LB and LE corresponding to [B] and
E respectively, fix an isomorphism L⊗n

E
∼= LB and a section s : X → LB with

the zero-set B, and denote by X̃ ′ ⊂ LE the set of the n-th roots of s (i.e.,
locally X̃ ′ consists of the points (x, t) ∈ LE such that tn = s(x)), and by p′,
the restriction to X̃ ′ of the bundle projection LE → X. The pair (X̃ ′, p′)
is called an n-fold covering of X branched over B, and E is called the class
of X̃ ′.

Denote by tr the restriction to X̃ ′ of the bundle automorphism LE → LE ,
(x, t) 7→ (x, t · exp(2πi/n)), and let ρ : X̃ → X̃ ′ be some fixed tr-invariant
resolution of singularities of X̃ ′. Then H1(X̃; C) is a C[t]-module, t acting via
the induced automorphism tr∗. Let p = p′ ◦ ρ.

1.1. Definition. H1(X̃; C) is called the (reduced) Alexander module of B,
and the characteristic polynomial of tr∗ on H1(X̃; C) is denoted by ∆̃B(t) and
is called the (reduced) Alexander polynomial of B.

Remarks. (1) It is shown in Hirzebruch [H] (see also [D1]) that any topo-
logical covering of X branched over B (with the given multiplicities of the
components) can be given by the above construction, and there is a natural
one-to-one correspondence between the isomorphism classes of such coverings
and classes E ∈ H1(X;O∗

X) such that nE = [B].
(2) In Libgober [L] it is shown that H1(X̃; C) does not depend on the

choice of X̃. If X = Cp2 and B is irreducible an reduced, then ∆̃ defined
above coincides with the classical Alexander polynomial of π1(X r B).

Since tr is a finite order analytical automorphism, H1(X̃; C) splits into
direct sum of the eigenspaces of tr, and this splitting is compatible with the
Hodge decomposition. Thus, one has

H1(X̃; C) =
⊕(

H1,0
r (X̃)⊕H0,1

r (X̃)
)
,

where Hp,q
r (X̃) is the eigenspace of Hp(X̃; Ωq(X̃)) corresponding to the eigen-

value exp(2πir) of tr∗, r ∈
{
−n−1

n , . . . ,− 1
n , 0

}
. Denote hp,q

r = hp,q
r (X̃) =

dimC Hp,q
r (X̃). Then from the Serre duality it follows that h1,0

r = h1,2
r and
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h0,1
r = h2,1

r . Put

hr(X̃) = hr =


h1,2

r , r ∈
{
−n−1

n , . . . ,− 1
n , 0

}
,

h1,2
0 + h2,1

0 , r = 0,

h2,1
−r , r ∈

{
0, 1

n , . . . , n−1
n

}
.

(We assume hr = 0 if r 6∈ (−1, 1) or nr 6∈ Z.)

1.2. Definition. The set of rationals
{
r ∈ Q

∣∣ hr 6= 0
}
, each counted with

the multiplicity hr, is called the spectrum of the pair (B,E) and is denoted
Spec(B,E).

1.3. Proposition.

(1) Spec(B,E) is symmetric in respect to 0;
(2) h0 = dimC H1(X; C);
(3) if r < 0, then hr = dimC

[
H1(X; p∗ωX̃)

]
r
, where [ · ]r stands for the

eigenspace of tr∗ corresponding to the eigenvalue exp(2πir);
(4) one has

∆̃B(t) =
∏

r∈Spec(B,E)

(t− exp(2πir))hr .

Proof. (1) This statement follows from the fact that Hp,q(X̃) and Hq,p(X̃)
are complex conjugate linear spaces.

(2) h0 is the dimension of the tr-invariant part of H1(X̃; C), which is iso-
morphic to H1(X; C).

(3) For r < 0 one has hr = dimC
[
H1(X̃;ωX̃)

]
r
, and the statement follows

from the fact that Rip∗ωX̃ = 0 for i > 0 (see Kollár [K]).
(4) This statement is obvious. �

2. Local Alexander polynomials

Let C be a (germ of a) plain curve at an isolated singular point O. Pick a
small ball B centered at O. It is well known (see, e.g., Milnor [M]), that the
intersection C ∩ ∂B is a link in ∂B = S3, and the isotopy type of C ∩ ∂B does
not depend of the choice of B, provided that the latter is sufficiently small.

2.1. Definition. The Alexander polynomial of the link C ∩ ∂B is called the
local Alexander polynomial of C at O and is denoted ∆C|O(t).

Remark. ∆C|O(t) admits another description (see Milnor [M]): it is the char-
acteristic polynomial of the monodromy action on the vanishing cohomology
group.

Let σ : Ỹ → C2 be a resolution of O such that σ−1C is a divisor with
normal crossings. Denote by Ei, i = 1, . . . , k, the reduced components of
σ−1O, and by mi, their multiplicities in σ−1C. Pick a rational r ∈ [−1, 0),
and consider the sheaves Jr = Jr(C|O) = σ∗K(−

∑
b(r + 1)micEi) and
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J r =
⋂
−16r′<r Jr′ , where K = ωỸ ⊗ (σ∗ωC2)⊗−1, and bxc stands for the

integral part of a rational x. Obviously, J r and Jr are sheaves of ideals
on C2, and Jr′ ⊂ J r′ ⊂ Jr ⊂ J r whenever −1 6 r < r′ < 0. Besides,
J−1 = OC2 , and all the quotients J r/Jr and Jr′/Jr, r′ 6 r, are concentrated
at O.

2.2. Proposition (see Varchenko [Var]). For any r ∈ (−1, 0) the integer
hr = hr(C|O) = dimC(J r/Jr)

∣∣
O

coincides with the multiplicity of r in the
spectrum SpecO C of O. (See Varchenko [Var] for the definition of SpecO C.)

Remark. In [Var], this result is stated and proved in somewhat different terms.
A “translation” to the language of this paper can be found in [D2].

Remark. In fact, the sheaves J r are only introduced to simplify the notation.
Since the function r 7→ Jr is, obviously, piecewise constant, one can replace
J r with Jr−ε, ε being sufficiently small. (If N is an integer divisible by
all the mi’s, one can take any ε < 1/N .) Note also that Jr can as well
be defined as Jr(C|O) = σ∗K(

∑
d−(r + 1)mieEi), where dxe is the upper

integral approximation of x.

2.3. Corollary. The non-invariant cyclotomic part of ∆C|O(t) is given by∏
(t− exp(2πir))hr+h−(r+1) ,

r running over all the rationals in (−1, 0) with hr 6= 0. In other words, the
multiplicity in ∆C|O(t) of a non-trivial root of unity exp(2πir), r ∈ (−1, 0),
equals hr + h−(r+1).

Proof. The statement immediately follows from the symmetry of SpecO C in
respect to 0 and the following result of Varchenko [Var]: the cyclotomic part
of ∆C|O(t) is given by ∏

r∈SpecO B

(t− exp(2πir))

(where the elements of SpecO C are counted with their multiplicities). �

3. The sheaves p∗ωX̃ .

Notation. Given a formal divisor D =
∑

riDi with rational coefficients ri,
let bDc =

∑
bricDi, dDe =

∑
drieDi, and Dred =

∑
Di, where bxc and dxe

stand, respectively, for the lower and upper integral approximations of a ra-
tional x.

Let B ⊂ X be a divisor with isolated singularities, E ∈ H1(X;O∗
X) a

class such that nE = [B], and p′ : X̃ ′ → X an n-fold covering branched
over B with the class E. In order to construct a desingularization X̃ of X̃ ′,
consider an embedded resolution σ : Y → X of the singularities of B, let
q′ = σ∗p′ : Ỹ ′ → Y , pick an equivariant desingularization ρ : Ỹ → Ỹ ′, and put
X̃ = Ỹ . Let q = q′ ◦ ρ : Ỹ → Y and p = σ ◦ q : Ỹ → X be the projections.
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From Proposition 1.3 it follows that ∆̃B(t) can be expressed in terms of
the cohomology of the sheaves Sr =

[
q∗ωỸ

]
r

or Sr =
[
p∗ωỸ

]
r

= σ∗Sr.
(As in Section 2, we denote by [ · ]r, r = −1,−n−1

n , . . . ,− 1
n , the eigensheaf

corresponding to the eigenvalue exp(2πir) of tr∗.) The following result is
proved in [D2]:

3.1. Proposition. Let B = σ∗B be the full inverse image of B in Y . Then
for any r = −1,−n−1

n , . . . ,− 1
n one has:

(1) Sr = ωY

(
(r + 1)nE −

⌊
(r + 1)B

⌋)
;

(2) Sr = ωX

(
(r + 1)nE

)
⊗

⊗
Jr(B|Oi), the product over all the singular

points Oi of B;
(3) Riσ∗Sr = 0 for i > 0.

Remark. Note that Statement (1) of Proposition 3.1 applies, in fact, to any
divisor B in Y with normal crossings.

4. Proof of the main theorem

4.1. Theorem (generalization of the Main Theorem). Let X be a projective
algebraic surface, and B an ample irreducible divisor on X with only isolated
singularities. Suppose that the set Sing B of the singular points of B is split
into two disjoint subsets, S+ and Sexc, and there is a resolution of all the points
in S+ such that the proper transform of B has positive self-intersection. Then
∆̃B(t) divides the product

(t− 1)b1(X)
∏

Oi∈Sexc

∆B|Oi
(t)

(no matter what class E ∈ H1(X;O∗
X) is used to define ∆̃B(t))

Remark. As it was mentioned in Introduction, the nodes of B never contribute
to the Alexander polynomial and, hence, one can always keep them in Sexc.

Proof. Let the spaces Y, Ỹ ′, Ỹ = X̃ and maps σ, ρ, p, q be as in Section 3.
(We suppose that the resolutions of the points in S+ are the ones mentioned
in the theorem.) First of all, note that the trivial part of the Alexander
module H1(X̃; C) is isomorphic to H1(X; C). This corresponds to the factor
(t − 1)b1(X) in the above formula. Hence, one can confine oneself to con-
sidering the non-trivial roots of ∆̃B(t), i.e., those of the form exp(2πir),
r = −n−1

n , . . . ,− 1
n , and, according to Proposition 1.3 and Corollary 2.3, the

result would follow from the inequalities

hr(Ỹ ) = dimC
[
H1(X; p∗ωX̃)

]
r

6
∑

Oi∈Sexc

hr(B|Oi).

We will use Viehweg’s vanishing theorem, which, in the two-dimensional
case, can be stated as follows:
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4.2. Theorem (see Viehweg [V] or Miyaoka [Mi]). Let Y be a projective
surface (over C), D a formal divisor on Y with rational coefficients, and L
an invertible sheaf on Y . Suppose that the support of D is a divisor with
normal crossings, (c1L − [D])2 > 0, and (c1L − [D]) ◦ C > 0 for any curve
C ⊂ Y . Then Hp(X;L ⊗ ωY (−bDc)) = 0 for any p > 0.

Denote by B the proper transform of B in Y , and by Fi, the part of its full
inverse image σ∗B which lies over Oi. Let B

′
= B +

∑
Oi∈Sexc

Fi. According

to our assumption, (B
′
)2 > 0. Prove that B

′ ◦ C > 0 for any curve C ⊂ Y .
This is obviously true for any curve which is not a component of B

′
(since

B
′

is an effective divisor). If C is a component of Fi (with Oi ∈ Sexc),
then B

′ ◦ C = 0, since, at least, homologically, B
′
can be pushed out of the

fiber σ−1Oi. Finally, if C = B, then B
′ ◦B = B

′ ◦ (B
′ −

∑
Fi) = (B

′
)2 > 0.

Pick some r ∈
{
−n−1

n , . . . ,− 1
n

}
. Since nE−σ∗B is numerically equivalent

to zero, the pair (L, D) = ((r + 1)nE, (r + 1)σ∗B − εB
′
), ε > 0, satisfies the

hypothesis of Theorem 4.2, and, hence, H1
(
Y ;ωY ((r + 1)nE − bDc)

)
= 0.

Now note that, if ε is sufficiently small, the sheaf Rr = ωY ((r + 1)nE − bDc)
contains Sr =

[
q∗ωX̃

]
r
, and in the pull-back of a neighborhood of a singular

point Oi of B it coincides with either Sr (if Oi ∈ S+), or Sr′ for some r′ < r
(if Oi ∈ Sexc). In particular, this implies that

(1) Riσ∗Rr = 0 for i > 0 (The statement is local in X, and Proposi-
tion 3.1(3) applies),

(2) H1(X;σ∗Rr) = 0 (This follows from (1)), and
(3) the following sequence is exact

0 −→
[
p∗ωỸ

]
r
−→ σ∗Rr −→

⊕
Oi∈Sexc

J r(B|Oi)/Jr(B|Oi) −→ 0.

Hence, the cohomology exact sequence⊕
Oi∈Sexc

H0
(
X;J r(B|Oi)/Jr(B|Oi)

)
−→ H1

(
X;

[
p∗ωỸ

]
r

)
−→ H1

(
X;σ∗Rr

)
yields

hr(Ỹ ) = dimC H1
(
X;

[
p∗ωX̃

]
r

)
6∑

Oi∈Sexc

dimC H0
(
X;J r(B|Oi)/Jr(B|Oi)

)
=

∑
Oi∈Sexc

hr(B|Oi),

and the theorem follows. �
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