800 CONICS IN A SMOOTH QUARTIC SURFACE

ALEX DEGTYAREV

Abstract

We construct an example of a smooth spatial quartic surface that contains 800 irreducible conics.

1. Introduction

This short note was motivated by Barth, Bauer [1], Bauer [2], and my recent paper [4]. Generalizing [2], define $N_{2 n}(d)$ as the maximal number of smooth rational curves of degree d that can lie in a smooth degree $2 n K 3$-surface $X \subset \mathbb{P}^{n+1}$. (All algebraic varieties considered in this note are over \mathbb{C}.) The bounds $N_{2 n}(1)$ have a long history and currently are well known, whereas for $d=2$ the only known value is $N_{6}(2)=285$ (see [4]). In the most classical case $2 n=4$ (spatial quartics), the best known examples have 352 or 432 conics (see [1, 2]), whereas the best known upper bound is 5016 (see [2], with a reference to S. A. Strømme).

For $d=1$, the extremal configurations (for various values of n) tend to exhibit similar behaviour. Hence, contemplating the findings of [4], one may speculate that

- it is easier to count all conics, both irreducible and reducible, and
- nevertheless, in extremal configurations all conics are irreducible.

On the other hand, famous Schur's quartic (the one on which the maximum $N_{4}(1)$ is attained) has 720 conics (mostly reducible), suggesting that 432 should be far from the maximum $N_{4}(2)$. Therefore, in this note I suggest a very simple (although also implicit) construction of a smooth quartic with 800 irreducible conics.

Theorem 1.1 (see §3.3). There exists a smooth quartic surface $X_{4} \subset \mathbb{P}^{3}$ containing 800 irreducible conics.

I conjecture that $N_{4}(2)=800$ and, moreover, 800 is the sharp upper bound on the total number of conics (irreducible or reducible) in a smooth spatial quartic.

Acknowledgements. I am grateful to Sławomir Rams who introduced me to the subject and made me familiar with the current state of the art; it is his curiosity that encouraged my work in this direction.

2. The Leech lattice (see [3])

2.1. The Golay code. The (extended binary) Golay code is the only binary code of length 24, dimension 12, and minimal Hamming distance 8. We regard codewords as subsets of $\Omega:=\{1, \ldots, 24\}$ and denote this collection of subsets by \mathcal{C}; clearly, $|\mathcal{C}|=2^{12}$. The code \mathcal{C} is invariant under the complement $o \mapsto \Omega \backslash o$. Apart from \varnothing

[^0]and Ω itself, it consists of 759 octads (codewords of length 8), 759 complements thereof, and 2576 dodecads (codewords of length 12).

The setwise stabilizer of \mathcal{C} in the full symmetric group $\mathbb{S}(\Omega)$ is the Mathieu group M_{24} of order 244823040; the actions of this group on Ω and \mathcal{C} are described in detail in $\S 2$ of [3, Chapter 10].
2.2. The square 4 vectors. The Leech lattice is the only root-free unimodular even positive definite lattice of rank 24. For the construction, consider the standard Euclidean lattice $E:=\bigoplus_{i} \mathbb{Z} e_{i}, i \in \Omega$, and divide the form by 8 , so that $e_{i}^{2}=1 / 8$. (Thus, we avoid the factor $8^{-1 / 2}$ appearing throughout in [3].) Then, the Leech lattice is the sublattice $\Lambda \subset E$ spanned over \mathbb{Z} by the square 4 vectors of the form

$$
\begin{equation*}
\left.\left(\mp 3, \pm 1^{23}\right) \quad \text { (the upper signs are taken on a codeword } o \in \mathcal{C}\right) . \tag{2.1}
\end{equation*}
$$

(We use the notation of [3]: a^{m}, b^{n}, \ldots means that there are m coordinates equal to a, n coordinates equal to b, etc.) Apart from (2.1), the square 4 vectors in Λ are

$$
\begin{array}{ll}
\left(\pm 2^{8}, 0^{16}\right) & (\pm 2 \text { are taken on an octad, the number of }+ \text { is even }), \text { or } \\
\left(\pm 4^{2}, 0^{22}\right) & \text { (no further restrictions). } \tag{2.3}
\end{array}
$$

Altogether, there are 196560 square 4 vectors: $24 \cdot|\mathcal{C}|=98304$ vectors as in (2.1), $2^{7} \cdot 759=97152$ vectors as in (2.2), and $2^{2} \cdot C(24,2)=1104$ vectors as in (2.3).

3. The construction

In this section, we prove Theorem 1.1.
3.1. The lattice S. Consider the lattice $V:=\mathbb{Z} \hbar+\mathbb{Z} a+\mathbb{Z} u_{1}+\mathbb{Z} u_{2}+\mathbb{Z} u_{3}$ with the Gram matrix

$$
\left[\begin{array}{rrrrr}
4 & 2 & 0 & 0 & 0 \\
2 & 4 & 2 & 0 & 1 \\
0 & 2 & 4 & 2 & -1 \\
0 & 0 & 2 & 4 & 0 \\
0 & 1 & -1 & 0 & 4
\end{array}\right] .
$$

It can be shown that, up to $O(\Lambda)$, there is a unique primitive isometric embedding $V \rightarrow \Lambda$; however, for our example, we merely choose a particular model. Fix an ordered quintuple $Q:=(1,2,3,4,5) \subset \Omega$ and choose one of the four octads O such that $O \cap Q=\{1,2,4,5\}$ (cf. sextets in $\S 2.5$ of [3, Chapter 10]); upon reordering Ω, we can assume that $O=\{1,2,4,5,6,7,8,9\}$ (the underlined positions in the top row of Table 1). Then, the generators of V can be chosen as shown in the upper part of Table 1. (For better readability, we represent zeros by dots; all components beyond $\bar{O}:=Q \cup O$ are zeros.)

The choice of Q and O is unique up to M_{24}; furthermore, the subgroup $G \subset M_{24}$ stabilising Q pointwise and O as a set can be identified with the alternating group $\mathbb{A}(O \backslash Q)$; in particular, it acts simply transitively on the set of ordered pairs

$$
\begin{equation*}
(p, q): \quad p, q \in O \backslash Q=\{6,7,8,9\}, \quad p \neq q . \tag{3.1}
\end{equation*}
$$

Define a conic as a square 4 vector $l \in \Lambda$ such that

$$
l \cdot \hbar=2, \quad l \cdot a=1, \quad l \cdot u_{1}=l \cdot u_{2}=l \cdot u_{3}=0
$$

This strange condition can be recast as follows: $l \cdot \hbar=2$ and l (as well as \hbar) lies in the rank 20 lattice

$$
S:=\bar{V}^{\perp} \subset \Lambda, \quad \text { where } \bar{V}:=\hbar_{V}^{\perp}
$$

Table 1. The lattice V and the conics

$\#$	$\underline{1}$	$\underline{2}$	3	$\underline{4}$	$\underline{5}$	$\underline{6}$	$\underline{7}$	$\underline{8}$	$\underline{9}$	
\hbar	4	4	\cdot							
a	\cdot	4	4	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	
u_{1}	\cdot	\cdot	4	4	\cdot	\cdot	\cdot	\cdot	\cdot	
u_{2}	\cdot	\cdot	\cdot	4	4	\cdot	\cdot	\cdot	\cdot	
u_{3}	-2	2	\cdot	-2	2	2	2	2	2	
$\mathbf{1}$	1	3	-1	1	-1	1	1	-1^{*}	-1^{*}	$\pm 1^{15}$
$\mathbf{2}$	3	1	1	-1	1	1	1	-1^{*}	-1^{*}	$\pm 1^{15}$
$\mathbf{3}$	2	2	\cdot	$\pm 2^{6}, 0^{9}$						
$\mathbf{4}$	2	2	\cdot	\cdot	\cdot	\cdot	\cdot	2^{*}	-2^{*}	$\pm 2^{4}, 0^{11}$
	fixed $=Q$							movable in $O \backslash Q$		

Table 2. The number of conics in S
1: $\quad C(4,2) \cdot \underline{16}=96 \quad$ (sets $o \in \mathcal{C}$ such that $o \cap \bar{O}=\{2,3,5, p, q\})$,
2: $\quad C(4,2) \cdot \underline{16}=96 \quad($ sets $o \in \mathcal{C}$ such that $o \cap \bar{O}=\{1,4, p, q\})$,
3: $\quad 2^{5} \cdot \underline{10}=320 \quad$ (octads $o \in \mathcal{C}$ such that $o \cap \bar{O}=\{1,2\}$),
4: $2^{3} \cdot P(4,2) \cdot \underline{3}=288 \quad$ (octads $o \in \mathcal{C}$ such that $o \cap \bar{O}=\{1,2, p, q\}$).

Using $\S 2.2$, we conclude that each conic fits one of the four patterns shown at the bottom of Table 1: there are two for (2.1) and two for (2.2). (If l is as in (2.3), we have $l \cdot a=0 \bmod 2$.) The number of conics within each pattern is computed as shown in Table 2, where

- the ordered or unordered pair (p, q) as in (3.1) designates the two variable special positions marked with a * in Table 1,
- the underlined factor counts certain codewords $o \in \mathcal{C}$; the restrictions given by (2.1) or (2.2) are described in the parentheses, and
- the other factors account for the choice of (p, q) and/or signs in ± 2.

These counts sum up to 800 .
3.2. The Néron-Severi lattice. Observe that $\hbar \in 2 S^{\vee}$: indeed, $\hbar-2 a \in \bar{V}$ and we have $x \cdot \hbar=2 x \cdot a=0 \bmod 2$ for any $x \in S$. Thus, we can apply to $S \ni \hbar$ the construction of [4], i.e., consider the orthogonal complement $\hbar_{S}^{\perp}=V^{\perp} \subset \Lambda$, reverse the sign of the form, and pass to the index 2 extension

$$
N:=\left(-\left(\hbar \frac{\perp}{S}\right) \oplus \mathbb{Z} h\right)_{2}^{\sim}, \quad h^{2}=4,
$$

containing the vector $c:=c(l):=l-\frac{1}{2} \hbar+\frac{1}{2} h$ for some (equivalently, any) conic $l \in S$. These new vectors $c \in N$ are also called conics; one obviously has

$$
\begin{equation*}
c^{2}=-2 \quad \text { and } \quad c \cdot h=2 \tag{3.2}
\end{equation*}
$$

They are in a bijection with the conics in S; hence, there are 800 of them.
Starting from

$$
\operatorname{discr} V \cong\left[\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right] \oplus\left[\frac{1}{8}\right] \oplus\left[\frac{2}{5}\right]
$$

(see Nikulin [6] for the concept of discriminant form $\operatorname{discr} V:=V^{\vee} / V$ and related techniques), we easily compute

$$
\mathcal{N}:=\operatorname{discr} N \cong\left[\frac{5}{4}\right] \oplus\left[\frac{1}{8}\right] \oplus\left[\frac{2}{5}\right] \cong\left[-\frac{1}{4}\right] \oplus\left[-\frac{5}{8}\right] \oplus\left[\frac{2}{5}\right]
$$

Therefore, $-\mathcal{N} \cong \operatorname{discr} T$, where $T:=\mathbb{Z} b \oplus \mathbb{Z} c, b^{2}=4, c^{2}=40$. Then, it follows from [6] that there is a primitive isometric embedding of the hyperbolic lattice N to the intersection lattice H_{2} of a $K 3$-surface, so that $T \cong N^{\perp}$ play the rôle of the transcendental lattice. Finally, by the surjectivity of the period map [5], we conclude that there exists a $K 3$-surface X with $N S(X) \cong N$.
3.3. Proof of Theorem 1.1. The Néron-Severi lattice $N S(X) \cong N$ constructed in the previous section is equipped with a distinguished polarisation $h \in N, h^{2}=4$. Since the original lattice $S \subset \Lambda$ is root free, N does not contain any of the following "bad" vectors:

- $e \in N$ such that $e^{2}=-2$ and $e \cdot h=0$ (exceptional divisors) or
- $e \in N$ such that $e^{2}=0$ and $e \cdot h=2$ (2-isotropic vectors)
(see [4] for details). Hence, by Nikulin [7] and Saint-Donat [8], the linear system $|h|$ is fixed point free and maps X onto a smooth quartic surface $X_{4} \subset \mathbb{P}^{3}$.

The lattice N contains 800 conics c as in (3.2). By the Riemann-Roch theorem, each class c is effective, i.e., represented by a curve $C \subset X_{4}$ of projective degree 2 . Since X is smooth and contains no lines (or other curves of odd degree, as we have $h \in 2 N^{\vee}$ by the construction), each of these curves C is irreducible. This concludes the proof of Theorem 1.1.

References

1. W. Barth and Th. Bauer, Smooth quartic surfaces with 352 conics, Manuscripta Math. 85 (1994), no. 3-4, 409-417. MR 1305751
2. Th. Bauer, Quartic surfaces with 16 skew conics, J. Reine Angew. Math. 464 (1995), 207-217. MR 1340342
3. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1988, With contributions by E. Bannai, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 920369 (89a:11067)
4. Alex Degtyarev, Conics in sextic surfaces in \mathbb{P}^{4}, To appear, arXiv:2010.07412, 2020.
5. Vik. S. Kulikov, Surjectivity of the period mapping for K3 surfaces, Uspehi Mat. Nauk 32 (1977), no. 4(196), 257-258. MR 0480528 (58 \#688)
6. V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111-177, 238, English translation: Math USSR-Izv. 14 (1979), no. 1, 103-167 (1980). MR 525944 (80j:10031)
7. Viacheslav V. Nikulin, Weil linear systems on singular K3 surfaces, Algebraic geometry and analytic geometry (Tokyo, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, pp. 138164. MR 1260944
8. B. Saint-Donat, Projective models of K-3 surfaces, Amer. J. Math. 96 (1974), 602-639. MR 0364263 (51 \#518)

Department of Mathematics, Bilkent University, 06800 Ankara, TURKEY
Email address: degt@fen.bilkent.edu.tr

[^0]: 1991 Mathematics Subject Classification. Primary: 14J28; Secondary: 14N25.
 Key words and phrases. K3-surface, quartic surface, conic, Leech lattice.
 The author was partially supported by the TÜBİTAK grant 118F413.

