
Math 433, Fall 2000

Solutions to Final Exam

Problem 1. Find the coefficients of the first and second fundamental forms, principal, Gaussian, and mean
curvatures, the lines of curvature, and the asymptotic curves of Enneper’s surface

x(u, v) =
(
u− u3

3
+ uv2, v − v3

3
+ u2v, u2 − v2

)
.

Solution: This is just a direct calculation, so I skip it. Here is the answer:

E = G = (1 + u2 + v2)2, F = 0; e = −g = 2, f = 0; k1 = −k2 =
2
E

; H = 0, K = − 4
E2

;

the lines of curvature are u = const and v = const; the asymptotic curves are u± v = const.

Problem 2. (1) A nonsingular linear map A : V → W of 2-dimensional inner product spaces is called a
similitude if there is a constant λ such that (Ax,Ay) = λ(x, y) for each pair x, y ∈ V . (In other words, A is
a constant times an isometry.) Show that if A is not a similitude, there is a unique (up to reordering and
multiplication by −1) pair of orthonormal vectors e1, e2 ∈ V such that Ae1 and Ae2 are orthogonal.

(2) Let ϕ : S1 → S2 be a diffeomorphism of surfaces so that dϕ is never a similitude. Use part (1) to
show that a neighborhood of each point of S1 admits an orthogonal parametrization r1 such that ϕ ◦ r1 is
an orthogonal parametrization of S2.

Solution: (1) is an easy exercise in linear algebra. Given an orthonormal basis x1,x2 of V , the vectors e1, e2

are found in the form e1 = x1 cos α + x2 sin α, e2 = −x1 sin α + x2 cos α from the equation (Ae1, Ae2) = 0,
which is homogeneous in cos α, sin α. In particular, it follows that α can be chosen a continuous function of
the coefficients of the matrix of A.

(2) In view of therosteritem1 one can find two orthogonal differentiable unit vector fields e1, e2 on S1 such
that dϕ(e1) and dϕ(e2) are also orthogonal. The statement follows from the existence theorem applied to
the line fields defined by e1, e2.

Problem 3. Let x = x(u, v) be a regular parametrized surface. A parallel surface to x is a parametrized
surface

y(u, v) = x(u, v) + aN(u, v),

where a is a constant. Prove that:
(1) yu × yv = (1− 2Ha + Ka2)(xu × xv), where K and H are the Gaussian and mean curvatures of x

respectively;
(2) at regular points the Gaussian and mean curvatures of y are, respectively

K

1− 2Ha + Ka2
and

H −Ka

1− 2Ha + Ka2
;

(3) if x has constant mean curvature H ≡ c = const and a = 1/2c, then the parallel surface has constant
Gaussian curvature K ≡ 4c2.

Solution: (1) Differentiate y to get yu = xu + a(a11xu + a21xv) and yv = xv + a(a12xu + a22xv), multiply,
and use a11a22 − a12a21 = K and a11 + a22 = −2H.

(2) Let K ′ and H ′ be the new curvatures, F ′, . . . , the new coefficients, etc. Denote, for shortness,
A = (1− 2Ha + Ka2). From (1) it follows that N ′ = N . Hence,{

N ′
u = Nu = a11xu + a21xv = a11(yu − aNu) + a21(yv − aNv),

N ′
v = Nv = a12xu + a22xv = a12(yu − aNu) + a22(yv − aNv).

Now just resolve this system in Nu, Nv to get the new coefficients a′ij (The determinant of this system is
nonzero at regular points. Guess why?)




N ′
u =

a11 + Ka

A
yu +

a21

A
yv,

N ′
v =

a12

A
yu +

a22 + Ka

A
yv

and use H ′ = −1
2
(a′11 + a′22) and K ′ = a′11a

′
22 − a′21a

′
12.

(3) follows immediately from (2).
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Problem 4. Let α : I → S ⊂ R3 be a curve on a regular surface S. Consider the ruled surface generated
by the family

[
α(t), N(α(t))

]
. Prove that α is a line of curvature in S if and only if this ruled surface is

developable.

Solution: Let N(t) = N(α(t)). Then N ′ = dN(α′) by definition. If α is a line of curvature, then α′ = λN ′,
which implies (N, N ′, α′) = 0, i.e., the surface is developable. If the surface is developable, then, by definition,
(N, N ′, α′) = 0 and, since α′ ⊥ N and N ′ ⊥ N , this implies α′ ‖N ′, i.e., α is a line of curvature.


