
Math 310 Topology, Spring 2000

Solutions to Midterm 2

Problem 1. A subspace A ⊂ X is called a retract of X if there is a map ρ : X → A such that ρ(a) = a
for all a ∈ A. (Such a map is called a retraction.) Show that a retract of a Hausdorff space is closed. Show,
further, that A is a retract of X if and only if the pair (X, A) has the following extension property : any map
f : A → Y to any topological space Y admits an extension X → Y .

Solution: (1) Let x /∈ A and a = ρ(x) ∈ A. Since X is Hausdorff, x and a have disjoint neighborhoods U
and V , respectively. Then ρ−1(V ∩A) ∩ U is a neighborhood of x disjoint from A. Hence, A is closed.

(2) Let A be a retract of X and ρ : A → X a retraction. Then for any map f : A → Y the composition
f ◦ρ : X → Y is an extension of f . Conversely, if (X, A) has the extension property, take Y = A and f = idA.
Then any extension of f to X is a retraction.

Problem 2. A compact Hausdorff space X is called an absolute retract if whenever X is embedded into
a normal space Y the image of X is a retract of Y . Show that a compact Hausdorff space is an absolute
retract if and only if there is an embedding X ↪→ [0, 1]J to some cube [0, 1]J whose image is a retract.
(Hint : Assume the Tychonoff theorem and previous problem.)

Solution: A compact Hausdorff space is normal, hence, completely regular, hence, it admits an embedding
to some [0, 1]J . Due to the Tychonoff theorem [0, 1]J is compact. Since it is also Hausdorff, it is normal,
and, by the definition of absolute retract, the image of X is a retract.

Let X be a retract of some [0, 1]J and ρ : [0, 1]J → X a retraction. (I identify X with its image.) Let
i : X → Y be an embedding of X to another normal space Y . Since X is compact, its image is closed and,
due to the Tietze theorem, the map i−1 : i(X) → X ↪→ [0, 1]J admits an extension f : Y → [0, 1]J . Then the
composition i ◦ ρ ◦ f : Y → i(X) is a retraction.

Problem 3. Classify up to homeomorphism the Latin letters (in computer modern sans serif font):

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

(Hint : In order to distinguish nonhomeomorphic spaces try to classify their points according to how their
removal distorts the connectedness of the space and/or neighborhood of the point.)

Solution: The homeomorphism classes of the letters, along with the invariants which distinguish between
them, are given in the following table: (See also comments below)

N Class Endpoints I1(X) I2(X) #I3(X) #I4(X)

1 A R 2 pt ∪ pt ∪ I◦∪ I◦ Î ∪ Î 0 0

2 B 0 X itself ∅ 0 0

3 C G I J L M N S U V W Z 2 pt ∪ pt I◦ 0 0
4 D O 0 X itself ∅ 0 0

5 E F T Y 3 pt ∪ pt ∪ pt I◦∪ I◦∪ I◦ 1 0

6 H K 4 pt ∪ pt ∪ pt ∪ pt I◦∪ I◦∪ I◦∪ I◦∪ I◦ 2 0

7 P 1 pt ∪ I◦ Î 0 0
8 Q 2 pt ∪ pt ∪ I◦ I◦∪ I◦ 1 0

9 X 4 pt ∪ pt ∪ pt ∪ pt I◦∪ I◦∪ I◦∪ I◦ 0 1

Here pt, I◦, and Î stand, respectively, for a single point, open interval (0, 1), and semi-open interval (0, 1],
and ∪ denotes disjoint union of topological spaces. In order to distinguish the classes, introduce the subsets
In(X) of the points x ∈ X such that X r {x} consists of n connected components. Also, let us call a point
x ∈ X an endpoint of X if U r {x} is connected for any connected neighborhood U of x. Clearly, any
homeomorphism X → Y must take In(X) to In(Y ) and the endpoints of X to those of Y .

In view of the table the only problem left is to prove that classes 2 and 4 are different. For this purpose
just note that any pair of distinct points divides letters D and O (which are obviously homeomorphic to S1)
into two intervals, while in B there is a pair of points which divides it into three intervals.

Remark. Those who just copied this solution from the 1997 midterm were supposed to also give a rigorous
justification for their count of endpoints.
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Problem 4. Show that a connected regular space consisting of more than one point is uncountable.
(Hint : Show first that the claim holds for a normal space.)

Solution: Any countable space is, obviously, Lindelöf, and a Lindelöf regular space is normal. Thus, it
suffices to show that a connected normal space X is uncountable. Pick two distinct points x, y ∈ X. Since X
is normal, points are closed and, due to the Urysohn lemma, there is a continuous function f : X → [0, 1]
such that f(x) = 0 and f(y) = 1. The image f(X) is connected (as so is X) and contains {0, 1}; hence, it
coincides with [0, 1] and is uncountable. On the other hand, the image of a countable set (under any map)
is at most countable.


