Math 310 Topology, Spring 2000

Solutions to Midterm 2

Problem 1. A subspace A C X is called a retract of X if there is a map p: X — A such that p(a) = a
for all @ € A. (Such a map is called a retraction.) Show that a retract of a Hausdorff space is closed. Show,
further, that A is a retract of X if and only if the pair (X, A) has the following extension property: any map
f: A —Y to any topological space Y admits an extension X — Y.

Sovution: (1) Let ¢ A and a = p(z) € A. Since X is Hausdorff, z and a have disjoint neighborhoods U
and V, respectively. Then p~*(V N A) N U is a neighborhood of z disjoint from A. Hence, A is closed.

(2) Let A be a retract of X and p: A — X a retraction. Then for any map f: A — Y the composition
fop: X — Y is an extension of f. Conversely, if (X, A) has the extension property, take Y = A and f = id 4.
Then any extension of f to X is a retraction.

Problem 2. A compact Hausdorff space X is called an absolute retract if whenever X is embedded into
a normal space Y the image of X is a retract of Y. Show that a compact Hausdorff space is an absolute
retract if and only if there is an embedding X — [0,1]7 to some cube [0,1]7 whose image is a retract.
(Hint: Assume the Tychonoff theorem and previous problem.)

Sovrution: A compact Hausdorff space is normal, hence, completely regular, hence, it admits an embedding
to some [0,1]7. Due to the Tychonoff theorem [0,1]” is compact. Since it is also Hausdorff, it is normal,
and, by the definition of absolute retract, the image of X is a retract.

Let X be a retract of some [0,1]7 and p: [0,1]7 — X a retraction. (I identify X with its image.) Let
i: X — Y be an embedding of X to another normal space Y. Since X is compact, its image is closed and,
due to the Tietze theorem, the map i~1: i(X) — X < [0,1]” admits an extension f: Y — [0,1]7. Then the
composition io po f: Y — i(X) is a retraction.

Problem 3. Classify up to homeomorphism the Latin letters (in computer modern sans serif font):
ABCDEFGHIJKLMNOPQRSTUVWXYZ

(Hint: In order to distinguish nonhomeomorphic spaces try to classify their points according to how their
removal distorts the connectedness of the space and/or neighborhood of the point.)

Sorution: The homeomorphism classes of the letters, along with the invariants which distinguish between
them, are given in the following table: (See also comments below)

N Class Endpoints Il(X) IQ(X) #I3(X) #I4(X)
1[AR 2 ptUptUI°UI° Iui 0 0
2 | B 0 X itself %] 0 0
3|CGIJLMNSUVWZ 2 ptUpt 1° 0 0
4| DO 0 X itself %] 0 0
5 | EFTY 3 pt U pt U pt I°uI°UI® 1 0
6 | HK 4 ptUptUptUpt | I°PUTI°UI°UI°UI® 2 0
7P 1 ptuUI° I 0 0
8 | Q 2 ptUptulI® ey rI° 1 0
9 | X 4 pt Upt U ptU pt I°PuI°UI°UI® 0 1

Here pt, I°, and I stand, respectively, for a single point, open interval (0,1), and semi-open interval (0, 1],
and U denotes disjoint union of topological spaces. In order to distinguish the classes, introduce the subsets
I,(X) of the points € X such that X ~\ {z} consists of n connected components. Also, let us call a point
x € X an endpoint of X if U ~ {z} is connected for any connected neighborhood U of z. Clearly, any
homeomorphism X — Y must take I,,(X) to I,(Y) and the endpoints of X to those of Y.

In view of the table the only problem left is to prove that classes 2 and 4 are different. For this purpose
just note that any pair of distinct points divides letters D and O (which are obviously homeomorphic to S*)
into two intervals, while in B there is a pair of points which divides it into three intervals.

Remark. Those who just copied this solution from the 1997 midterm were supposed to also give a rigorous
justification for their count of endpoints.
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Problem 4. Show that a connected regular space consisting of more than one point is uncountable.
(Hint: Show first that the claim holds for a normal space.)

Sorution: Any countable space is, obviously, Lindelof, and a Lindel6f regular space is normal. Thus, it
suffices to show that a connected normal space X is uncountable. Pick two distinct points x,y € X. Since X
is normal, points are closed and, due to the Urysohn lemma, there is a continuous function f: X — [0,1]
such that f(z) = 0 and f(y) = 1. The image f(X) is connected (as so is X) and contains {0, 1}; hence, it
coincides with [0, 1] and is uncountable. On the other hand, the image of a countable set (under any map)
is at most countable.



