Solutions to Midterm 1

Problem 1. Prove that $\mathbb{R}^{2} / \mathbb{Z}^{2}$ is homeomorphic to the 2-torus T^{2}. (Here \mathbb{R}^{2} is regarded as a group and \mathbb{Z}^{2}, as a subgroup. Since \mathbb{R}^{2} is also a topological space, the quotient group has topology as well.)
Solution: The square $[0,1] \times[0,1] \subset \mathbb{R}^{2}$ contains a representative of each coset. Hence, set theoretically the two quotients coincide. Of course, one should also check that so do the topologies; this is tedious, but straightforward.

Problem 2. Let Y be the half-plane $\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0\right\}$. Define $\tilde{X}=Y \times \mathbb{N}$ and $X=\tilde{X} / \sim$, where \sim is the equivalence relation generated by $((0, y), n) \sim((0, y), m)$ for all $y \in \mathbb{R}$ and all pairs $m, n \in \mathbb{N}$. (I.e., we identify the border lines of the half-planes, sewing 'sheets' to a 'book'.) Let $\tilde{A}=\{((x, y), n) \in \tilde{X} \mid x>0, y<-1 / n\}$ and A the image of \tilde{A} in X. What are $\mathrm{Cl} A, \mathrm{Cl}_{\mathrm{s}} A$, and $\mathrm{Cl}_{\mathrm{s}} \mathrm{Cl}_{\mathrm{s}} A$ (where Cl_{s} is the sequential closure)?
Solution: $\mathrm{Cl}_{\mathrm{s}} A$ is the image of $\mathrm{Cl}_{\tilde{X}} \tilde{A}$, and $\mathrm{Cl} A=\mathrm{Cl}_{\mathrm{s}} \mathrm{Cl}_{\mathrm{s}} A$ is $\mathrm{Cl}_{\mathrm{s}} A \cup(0,0)$. (In particular, this is an example of a sequential closure that is not sequentially closed!) Almost everything is more or less obvious here; let us prove that $(0,0) \notin \mathrm{Cl}_{\mathrm{s}} A$. Indeed, among neighborhoods of $(0,0)$ are the images $U\left(\varepsilon ; \varepsilon_{1}, \varepsilon_{2}, \ldots\right)$ of the saturated open sets $(-\varepsilon, \varepsilon) \times\left[0, \varepsilon_{1}\right) \times\{1\} \cup(-\varepsilon, \varepsilon) \times\left[0, \varepsilon_{2}\right) \times\{2\} \cup \ldots$, where $\varepsilon, \varepsilon_{1}, \ldots$ are positive reals. Now let $\left(x_{n}\right)$ be a sequence in A; we need to show that (0,0) has a neighborhood not containing infinitely many members of the sequence. If $\left(x_{n}\right)$ has infinitely many members in one sheet, say, $Y \times\{m\}$, then all these members are not in $U(1 / m ; 1,1, \ldots)$. If each sheet $Y \times\{m\}$ contains finitely many of the x_{n} 's, then the intersection of the sequence with $(Y \times\{m\})$ is at a positive distance δ_{m} from the edge $\{0\} \times \mathbb{R} \times\{m\}$ and, hence, the neighborhood $V\left(1 ; \delta_{1}, \delta_{2}, \ldots\right)$ is contains none of x_{n}.

Problem 3. Let $f, g: X \rightarrow Y$ be two continuous maps.
(1) True or false: the set $A=\{x \in X \mid f(x)=g(x)\}$ is closed?
(2) The same question under the assumption that Y is Hausdorff.

Solution: (2) True. Consider the map $h=f \times g: X \rightarrow Y \times Y$. Then, obviously, h is continuous and $A=h^{-1}(\Delta)$, where $\Delta=\{(y, y)\} \subset Y \times Y$ is the diagonal. The latter is closed.
(1) False. If Y is not Hausdorff, let $X=Y \times Y$ and take for f, g the two projections $X \rightarrow Y$. Then A is the diagonal.

Problem 4. Consider the following topologies on \mathbb{R} :

- the standard topology τ_{1};
- the lower limit topology τ_{2};
- the topology τ_{3} defined by the base $\{(a, b) \mid a, b \in \mathbb{Q}\}$;
- the topology τ_{4} defined by the base $\{[a, b) \mid a, b \in \mathbb{Q}\}$.

Compare these four topologies and find the closures and the interiors in respect to each of them of the sets $A=(0, \sqrt{2})$ and $B=(\sqrt{2}, 3)$.
Solution: Straightforward.

