Solutions to Midterm 1

Problem 1. Prove that $\mathbb{R}^2/\mathbb{Z}^2$ is homeomorphic to the 2-torus T^2 . (Here \mathbb{R}^2 is regarded as a group and \mathbb{Z}^2 , as a subgroup. Since \mathbb{R}^2 is also a topological space, the quotient group has topology as well.)

Solution: The square $[0,1] \times [0,1] \subset \mathbb{R}^2$ contains a representative of each coset. Hence, set theoretically the two quotients coincide. Of course, one should also check that so do the topologies; this is tedious, but straightforward.

Problem 2. Let Y be the half-plane $\{(x, y) \in \mathbb{R}^2 | x \ge 0\}$. Define $\tilde{X} = Y \times \mathbb{N}$ and $X = \tilde{X} / \sim$, where \sim is the equivalence relation generated by $((0, y), n) \sim ((0, y), m)$ for all $y \in \mathbb{R}$ and all pairs $m, n \in \mathbb{N}$. (I.e., we identify the border lines of the half-planes, sewing 'sheets' to a 'book'.) Let $\tilde{A} = \{((x, y), n) \in \tilde{X} | x > 0, y < -1/n\}$ and A the image of \tilde{A} in X. What are Cl A, Cl_s A, and Cl_s Cl_s A (where Cl_s is the sequential closure)?

Solution: $\operatorname{Cl}_s A$ is the image of $\operatorname{Cl}_{\tilde{X}} \tilde{A}$, and $\operatorname{Cl} A = \operatorname{Cl}_s \operatorname{Cl}_s A$ is $\operatorname{Cl}_s A \cup (0, 0)$. (In particular, this is an example of a sequential closure that is not sequentially closed!) Almost everything is more or less obvious here; let us prove that $(0,0) \notin \operatorname{Cl}_s A$. Indeed, among neighborhoods of (0,0) are the images $U(\varepsilon;\varepsilon_1,\varepsilon_2,\ldots)$ of the saturated open sets $(-\varepsilon,\varepsilon) \times [0,\varepsilon_1) \times \{1\} \cup (-\varepsilon,\varepsilon) \times [0,\varepsilon_2) \times \{2\} \cup \ldots$, where $\varepsilon,\varepsilon_1,\ldots$ are positive reals. Now let (x_n) be a sequence in A; we need to show that (0,0) has a neighborhood not containing infinitely many members of the sequence. If (x_n) has infinitely many members in one sheet, say, $Y \times \{m\}$, then all these members are not in $U(1/m; 1, 1, \ldots)$. If each sheet $Y \times \{m\}$ contains finitely many of the x_n 's, then the intersection of the sequence with $(Y \times \{m\})$ is at a positive distance δ_m from the edge $\{0\} \times \mathbb{R} \times \{m\}$ and, hence, the neighborhood $V(1; \delta_1, \delta_2, \ldots)$ is contains none of x_n .

Problem 3. Let $f, g: X \to Y$ be two continuous maps.

- (1) True or false: the set $A = \{x \in X \mid f(x) = g(x)\}$ is closed?
- (2) The same question under the assumption that Y is Hausdorff.

Solution: (2) True. Consider the map $h = f \times g \colon X \to Y \times Y$. Then, obviously, h is continuous and $A = h^{-1}(\Delta)$, where $\Delta = \{(y, y)\} \subset Y \times Y$ is the diagonal. The latter is closed.

(1) False. If Y is not Hausdorff, let $X = Y \times Y$ and take for f, g the two projections $X \to Y$. Then A is the diagonal.

Problem 4. Consider the following topologies on \mathbb{R} :

- the standard topology τ_1 ;
- the lower limit topology τ_2 ;
- the topology τ_3 defined by the base $\{(a, b) \mid a, b \in \mathbb{Q}\};$
- the topology τ_4 defined by the base $\{[a, b) | a, b \in \mathbb{Q}\}.$

Compare these four topologies and find the closures and the interiors in respect to each of them of the sets $A = (0, \sqrt{2})$ and $B = (\sqrt{2}, 3)$.

SOLUTION: Straightforward.