
Math 310 Topology, Spring 1999

Solutions to Midterm 2

Problem 1. Let X be Hausdorff and A ⊂ X dense and locally compact. Prove that A is open. Deduce
from this that any locally compact subspace of a Hausdorff space is relatively closed, i.e., open in its closure.

Solution: Pick a point a ∈ A and assume that each neighborhood U of a in X contains limit points of A
which are not in A. Clearly, limit points of A which are in U are also limit points of U ∩ A; hence, U ∩ A
is not closed in X. On the other hand, a has a compact neighborhood U ∩ A; since X is Hausdorff, such a
neighborhood must be closed in X.

In general, if A is locally compact, it is dense and, hence, open in ClA.

Problem 2. Let X be a topological space and A,B ⊂ X compact subspaces.
(1) Is A ∪B compact?
(2) Is A ∩B compact?
(3) The same question under the assumption that X is Hausdorff.

Solution: (1) Yes. Given an open covering of A ∪ B, it also covers A and B. Hence, there is a finite
subcovering of A and a finite subcovering of B; their union is finite and covers A ∪B.

(2) No. Let Y be an infinite set and X = Y ∪ {a, b} (where a, b are two extra points), so that open are
any subset of Y , Y ∪ {a}, Y ∪ {b}, and X itself. Let A = Y ∪ {a} and B = Y ∪ {b}. Then A and B are
compact (say, any open covering of A must contain A itself), while A ∩ P = Y is an infinite discrete space,
hence, noncompact.

(3) Yes. Due to (1) only the intersection part needs proof. Since X is Hausdorff and B is compact, it is
closed. Thus, A ∩B is closed in A and, hence, compact.

Problem 3. Let X be a Hausdorff space, {Kα}α∈Λ a family of compact subspaces, and U ⊂ X an open
set containing

⋂
α∈Λ Kα. Prove that U contains

⋂
α∈A Kα for some finite subset A ⊂ Λ.

Solution: We can assume that X itself is compact (otherwise replace it with one of Kα); hence, so is X rU .
Since X is Hausdorff, all Kα are closed and {XrKα} is an open covering of XrU . Take a finite subcovering;
the corresponding Kα’s are what we need.

Problem 4. Prove that any collection of disjoint balls (of nonzero radii) in Rn is countable.

Solution: Any ball contains a rational point; since the balls are disjoint, all the points are distinct and, thus,
they enumerate the balls. The set of rational points is countable.

Problem 5. Let X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ . . . be an increasing sequence of subspaces so that each Xi is is
closed in Xi+1. Let X =

⋃∞
i=1 with the so called weak or direct limit topology: a set F ⊂ X is closed if and

only if F ∩Xi is closed in Xi for each i.
(1) Show that each Xi is a closed subspace of X.
(2) Show that if each Xi is normal, so is X.

Solution: (1) Each Xn is closed (this is obvious); why is it a subspace? If A is closed in X, then A ∩ Xn

is closed in Xn by the definition of the topology in X. If A is closed in Xn, then A ∩ Xm is closed in Xm

for m 6 n (as Xm ⊂ Xn is a subspace) and A is closed in Xm for m > n as Xn ⊂ Xm is a closed subspace.
Thus, A is also closed in X.

(2) It suffices to prove that, given a closed set A ⊂ X and a function f : A → I, it admits a continuous
extension g to X. Construct g by induction, using Tietze’s extension theorem. Let g1 : X1 → I be an
extension of f |A∩X1 to X1. Assuming that gn−1 : Xn−1 → I such that gn−1 = f on A ∩ Xn−1 is already
constructed, denote by fn : Xn−1 ∪ (A ∩ Xn) → I the result of pasting gn−1 and f |A∩Xn (it is continuous
due to the pasting lemma) and let gn : Xn → I be an extension of fn to Xn. Finally, define g : X → I via
g(x) = gn(x) if x ∈ Xn. This function is continuous due to the fact that X has weak topology: if
K ⊂ I is closed, then g−1(K) ∩Xn = g−1

n (K) is closed in Xn for all n and, hence, g−1(K) is closed in X.


