Math 310 Topology, Spring 1999

Solutions to Midterm 1

Problem 1. Enumerate all the nonhomeomorphic topologies on a three point set.

SOLUTION: The answer is: discrete, anti-discrete, and

Invariants are obvious.

Problem 2. True or false: $\operatorname{Cl} \bigcup A_{\alpha} = \bigcup \operatorname{Cl} A_{\alpha}$?

Solution: False. One has $\operatorname{Cl} \bigcup A_{\alpha} \supset \bigcup \operatorname{Cl} A_{\alpha}$ (the proof is the same as for two sets) but, in general, not vice versa. Example: the index set is (0,1) and $A_{\alpha} = \{\alpha\} \subset \mathbb{R}^1$. Then $\operatorname{Cl} \bigcup A_{\alpha} = [0,1]$ and $\bigcup \operatorname{Cl} A_{\alpha} = (0,1)$.

Problem 3. Let X, Y be two ordered sets in the order topology. Show that a bijective order preserving function $f: X \to Y$ is a homeomorphism.

Solution: Since f is order preserving and bijective, the pull-back of an interval (y_1, y_2) is the interval (x_1, x_2) , where $y_i = f(x_i)$, i = 1, 2. Thus, f is continuous. The same consideration applies to f^{-1} , which is also order preserving. Hence, f is a homeomorphism.

Problem 4. Let Y be an ordered set in the order topology, X an arbitrary topological space, and $f, g: X \to Y$ two continuous functions. Prove that:

- (1) the set $\{x \in X \mid f(x) \leq g(x)\}$ is closed;
- (2) the function $h: X \to Y, x \mapsto \min\{f(x), g(x)\}$, is continuous.

Solution: (1) Let A be the set in question, $B = X \setminus A\{x \in X \mid f(x) > g(x)\}$, and $x \in B$. Let a = g(x) and b = f(x). Then a < b. Pick c_1, c_2, c_3 so that $c_1 < a < c_2 < b < c_3$. Then x is contained in B together with the open set $f^{-1}(c_2, c_3) \cap g^{-1}(c_1, c_2)$. (If c_1 does not exist, i.e., a is the minimal element of Y, replace $(c_1, \cdot with [a, \cdot . If c_3 does not exist, i.e., b is the maximal element of Y, replace <math>\cdot, c_3$) with \cdot, b]. Finally, if c_2 does not exist, replace \cdot, c_2 with $(a, \cdot .)$

Statement (2) follows from (1) and the pasting lemma:

$$h(x) = \begin{cases} f(x), & \text{if } f(x) \leqslant g(x), \\ g(s), & \text{if } g(x) \leqslant f(x). \end{cases}$$

Problem 5. Let X be a topological space and $A \subset X$ a subspace. True or false: $\operatorname{Cl}(X \setminus A) = X \setminus \operatorname{Int} A$? SOLUTION: True. One has $X \setminus \operatorname{Int} A = X \setminus \bigcup U = \bigcap (X \setminus U)$, where U runs over all the open sets contained in A. Clearly, $X \setminus U$ is closed iff U is open, and $X \setminus U \supset X \setminus A$ iff $U \subset A$; thus, $X \setminus U$ runs over all the closed sets containing $X \setminus A$ and $\bigcap (X \setminus U) = \operatorname{Cl} A$.