You can use your textbooks and/or lecture notes

Name: ______

Problem 1 (30 pts).

- (1) Show that any locally compact second countable Hausdorff space is metrizable.
- (2) Is any second countable metrizable space locally compact?

Problem 2 (25 pts). Let X be a completely regular topological space, $A, B \subset X$ disjoint closed subsets, and A compact. Show that there is a continuous function $f: X \to [0, 1]$ such that $f|_A \equiv 0$ and $f|_B \equiv 1$.

Problem 3 (25 pts). Show that \mathbb{R}^n , n > 2, is not homeomorphic to \mathbb{R}^2 . (*Hint*: remove a point.)

Problem 4 (40 pts). Show that the closed ray $X = [0, \infty)$ does not admit a twopoint compactification. More precisely, there is no compact Hausdorff space Ycontaining X as a dense subset and such that $Y \setminus X$ consists of two points. (*Hint*: show that the two points constituting $Y \setminus X$ cannot be separated.)

Problem 5 (30 pts). Compute the fundamental groups of the following spaces:

- (1) the *n*-dimensional torus $T^n = (S^1)^n$;
- (2) the solid torus $D^2 \times S^1$;
- (3) the annulus $\{z \in \mathbb{C} \mid 1 < |z| < 2\};$
- (4) the Möbius band;
- (5) the space $\mathbb{R}^4 \setminus \mathbb{R}^2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1^2 + x_2^2 \neq 0\};$
- (6) the letter 'R'.